Open Access
Subscription Access
Anisotropy Induced Tunable Magnetic Properties of Chemically Synthesized Copper Ferrite (CuxFe1-xO4) Nanoparticles with Different Composition
Here we report the structural and magnetic properties of cluster of ultrafine copper ferrite (CuxFe1-xO4) nanoparticles with different Cu:Fe composition synthesized by aqueous chemical reduction technique. The morphological, microstructural and compositional studies confirm the formation ofCuxFe1-xO4 nanoparticles with varied Cu and Fe percentages which are polycrystalline in nature with fcc structure and average size of ~20 nm. Thermal stability and chemically purity of ferrite nanoparticles are ensured by analyzing the TGA/DTA curve in the temperature range 30-1000 oC. Magnetization vs magnetic field (M-H) hysteresis loops measured at two different temperatures (80K and 300K) reveal the typical ferromagnetic behavior ofCuxFe1-xO4nanoparticles with a systematic change in the saturation magnetization (MS), coercive field (Hc), remanent magnetization (Mr), Squareness (Mr/MS), hardness (α) and effective anisotropy energy constant (Keff) with the variation of Cu and Fe percentages. Tunable magnetic properties of ferrite nanoparticles with the variation of magnetic Fe and non-magnetic Cu are attributed to the modulation of effective anisotropy originated from the surface spin randomization.
Keywords
Soft magnetic materials; Ferrites; Nanoparticles; Magnetic properties.
User
Font Size
Information
- Kumar L & Kar M, J Magn Magn Mater, 323 (2011) 2042.
- Rout S N, Manglam M K, Mallick J, Datta S, Kar M, Physica B: Condensed Matter 666 (2023) 415134.
- Jasim A S, Patra I, Opulencia M J C, Hachem K, Parra R M R, Ansari M J, Jalil A T, Gazally M E A, Naderifar M, Khatami M & Sigari R A, Nanotechnol Rev, 11 (2022) 2483.
- Masunga N, Mmelesi O K, Kefeni K K & Mamba B B, J Environ Chem Eng, 7 (2019) 103179.
- Rosa J C I, Segarra M, ACS Omega, 4 (2019) 18289.
- Kurian J, Mathew M J, J Magn Magn Mater, 451 (2018) 121.
- Das B B, Venugopal P & Govinda R R, Indian J Pure Appl Phys, 53 (2015) 399.
- Aquino R, Depeyrot J, Sousa M H, Tourinho F A, Dubois E & Perzynski R, Phys Rev B, 72 (2005) 184435.
- Batlle X, Labarta A, J Phys D, 35 (2002) 469.
- Kodama R H, J Magn Magn Mater, 200 (1999) 359.
- Thomas L, Lionti F, Ballow R, Gatteschi D, Sessoli R & Barbara B, Nature, 383 (1996) 145.
- Zhang X X, Hernandez J M, Tejada J & Ziolo R F, Phys Rev B, 54 (1996) 4101.
- Mondal B, Kundu M, Mandal SP, Saha R, Roy U K, Roychowdhury A, et al., ACS Omega, 4 (2019) 13845.
- Chen N S, Yang X J, Liu E S & Huang J L, Sens Actuators B: Chem, 66 (2000) 178.
- Shin H C, Choi S C, Jung K D & Han S H, Chem Mater, 13 (2001) 1238.
- Nedelkoski Z, Kepaptsoglou D, Lari L, Wen T, Booth R A, Oberdick S D, Galindo P L, Ramasse Q M, Evans R F L, Majetich S & Lazarov V K, Sci Rep, 7 (2017) 45997.
- Mameli V, Musinu A, Ardu A, Ennas G, Peddis D, Niznansky D, Sangregorio C, Innocenti C, Thanh N T K & Cannas C, Nanoscale, 8 (2016) 10124.
- Kingery W D, Bowen H K & Uhlmann D R, Introduction of Ceramics, (New York: Willey) (1976) 993.
- Chatterjee B K, Bhattacharjee K, Dey A, Ghosh C K & Chattopadhyay K K, Dalton Trans, 43 (2014) 7930.
- Darwish M S A, Kim H, Lee H, Ryu C, Lee J & Yoon J, Nanomaterials, 9 (2019) 1176.
- Cullity B D, Introduction to Magnetic Materials, (New York: Addison – Wesley) (1972).
Abstract Views: 88
PDF Views: 50