Open Access Open Access  Restricted Access Subscription Access

Modeling the Parameters of p-i-n Solar Cells Based on CH3NH3PbI3 Perovskite


Affiliations
1 Yerevan State University, 1 Alex Manoogian St, 0025, Yerevan, Armenia
 

The simulation of short-circuit current, open-circuit voltage, absorption coefficient, fill factor and efficiency of solar cell with p-i-n structure based on organo-trihalide perovskite semiconductors CH3NH3PbI3 was carried out. Simulated data obtained for the short-circuit current density ~15÷31 mA/cm2, the open-circuit voltage ~0.99÷1.03 V, the absorption coefficient ~104cm-1 the fill factor ~82.1%÷84.8%, and the efficiency ~14.85÷27.2% are in good agreement with the results of previous numerical and experimental data for perovskites solar cells with similar composition and size. Closer to the edge of intrinsic absorption, both the short-circuit current and open-circuit voltage depend linearly on the wavelength of the incident irradiation. The calculations show the potential possibility of using perovskites in the design of tandem solar cells. The novelty of this work is the demonstration of the possibility of using thin layers of perovskite to convers solar energy. This material with direct bandgap energy provides good absorption of photons with energy>1.56 eV. In combination with the crystalline silicon, perovskite can broaden the absorption spectrum of irradiation, thereby increasing the power conversion efficiency of the tandem solar cells.

Keywords

Perovskite, Solar Cell, Short Circuit Current.
User
Notifications
Font Size

  • Uddin A, Comprehensive Guide on Organic and Inorganic Solar Cells, Elsevier, (2022) 25.
  • Dipta S S & Uddin A, Reference Module in Earth Systems and Environmental Sciences, Elsevier, (2022).
  • Tanveer K A M M, Khan M K R, Liton M N H, Kamruzzaman M, Hossain M S & Chen S, AIP Advances, 12 (2022) 065126.
  • Syahra N C, Iwantono, Rinia A S, Nurrahmawati P, Nafisah S, Morsin M & Syahputra R F, Indian J Pure Appl Phys, 61 (2023) 90.
  • Sarkar P, Mayengbam R, Tripathy S K & Baishnab K L, Indian J Pure Appl Phys, 57 (2019) 891.
  • Liu M, Johnston M B & Snaith H J, Nature, 501 (2013) 395.
  • Jeon N J, Noh J H, Kim Y C, Yang W S, Ryu S & Seok S I, Nat Mater, 13 (2014) 897.
  • Bai S, Wu Z, et al., Nano Res, 7 (2014) 1749.
  • Hernández-Granados A, Corpus-Mendoza A N, Moreno-Romero P M, Rodríguez-Castañeda C A, Pascoe-Sussoni J E, Castelo-González O A, Menchaca-Campos E C, Escorcia-García J & Hu H, Opt Mater, 88 (2019) 695.
  • Tuchinda W, Amratisha K, et al., Solar Energy, 244 (2022) 65.
  • Park J Y, Lee Y H, Kim H & Dou L, J Appl Phys, 134 (2023) 060901.
  • Mei A, Li X, et al. Science, 345 (2014) 295.
  • Green M A, Dunlop E D, Hohl-Ebinger J, Yoshita M, Kopidakis N, Bothe K, Hinken D, Rauer M & Hao X, Prog Photovolt Res Appl, 30 (2022) 687.
  • Lang F, Jošt M, Frohna K, et al., Joule, 4 (2020) 1054.
  • Xing G, Mathews N, Lim S S, Yantara N, Liu X, Sabba D, Grätzel M, Mhaisalkar S & Sum T C, Nat Mater, 13 (2014) 476.
  • Zhang Q, Shang Q, Su R, Do T T H & Xiong Q, Nano Lett, 21 (2021) 1903.
  • Tan Z K, Moghaddam R S, Lai M L, et al., Nat Nanotechnol, 9 (2014) 687.
  • Liu X K, Xu W, Bai S, Jin Y, Wang J, Friend R H & Gao F, Nat Mater, 20 (2021) 10.
  • Li G, Wang Y, Huang L & Sun W, ACS Appl Electron Mater, 4 (2022) 1485.
  • Dong R, Fang Y, Chae J, Dai J, Xiao Z, Dong Q, Yuan Y, Centrone A, Zeng X C & Huang J, Adv Mater, 27 (2015) 1912.
  • Dou L, Yang Y, You J, Hong Z, Chang W-H, Li G & Yang Y, Nat Commun, 5 (2014) 5404.
  • Green M A, Dunlop E D, Yoshita M, Kopidakis N, Bothe K, Siefer G & Hao X, Prog Photovoltaics, 31 (2023) 651.
  • Al-Ashouri A, Köhnen E, Li B, et al., Science, 370 (2020) 1300.
  • Yoo J J, Seo G, et al., Nature, 590 (2021) 587.
  • Jeong J, Kim M, et al., Nature, 592 (2021) 381.
  • YingZ, Yang Z, et al., Joule, 6 (2022) 2644.
  • Yin W-J, Yang Ji-H, Kang J & Yan S-H, J Mater Chem, A3 (2015) 8926.
  • Tooghi A, Fathi D & Eskandari M. Sci Rep, 10 (2020)18699.
  • Hossain M F, Faisal M & Okada H, 2nd Int Conf on Electrical, Computer & Telecom Engineering (ICECTE), Rajshahi, Bangladesh, (2016) 1.
  • Motta C, El-Mellouhi F & Sanvito S, Sci Rep, 5 (2015) 12746.
  • Akel S, Kulkarni A, Rau U & Kirchartz T, Prx Energy, 2 (2023) 013004.
  • Radhakrishna K, Manjunath S B, Devadiga D, Chetri R & Nagaraja A T, ACS Appl Energy Mater, 6 (2023) 3635.
  • Rakstys K, Paek S, Drevilkauskaite A, Kanda H, Daskeviciute S, Shibayama N, Daskeviciene M, Gruodis A, Kamarauskas E, Jankauskas V, Getautis V & Nazeeruddin M K, ACS Appl Mater Interf, 12 (2020) 19710.
  • Meng X, Ho C H Y, Xiao S, Bai Y, Zhang T, Hu C, Lin H, Yang Y, So S K & Yang S, Nano Energy, 52 (2018) 300.
  • Kong J, Wang H, et al. ACS Appl Energy Mater, 3 (2020) 7231.
  • Peng J, Kremer F, Walter D, et al., Nature, 601 (2022) 573.
  • Li C, Zhang Y, Zhang X, Zhang P, Yang X & Chen H, Adv Funct Mater, 33 (2023) 2214774.
  • Chen L-C, Chen J-C, Chen C-C & Wu C-G, Nanoscale Res Lett, 1 (2015) 1020.
  • Dharmadasa I M, Rahaq Y & Alam A E, J Mater Sci: Mater Electron, 30 (2019) 12851.
  • Moss T S, Barrell G J & Ellis B, Semiconductor Opto-Electronics, Bullerworth & Co. LTD, (1973).
  • Kumar A, Singh S & Al-Bahrani M, Surfaces Interfaces, 34 (2022) 102341.
  • Ghosekar I C & Patil G C, Semicond Sci Technol, 36 (2021) 045005.
  • Gasparyan F V & Ayvazyan G Y, J Contemp Phys, 53 (2022) 160.
  • Ayvazyan G, Vaseashta A, Gasparyan F & Khudaverdyan S, J Mater Sci.: Mater Electron, 33 (2022) 17001.
  • Ayvazyan G, Gasparyan F & Gasparian V, Opt Mater, 140 (2023) 113879.
  • Park S, Irradiation effect in triple junction solar cells for spatial applications, (2019).
  • Dong Q, Fang Y, Shao Y, Mulligan P, Qiu J, Cao L & Huang J, Science, 347 (2015) 967.
  • https://www.pveducation.org/pvcdrom/voltage-at-the-maximum-power-point-vmp.
  • Lim J, Kober-Czerny M, Lin Y-H, Ball J M, Sakai N, Duijnstee E A, Hong M J, Labram J G, Wenger B & Snaith H J, Nat Commun, 13 (2022) 4201.
  • Wehrenfennig C, Liu M, Snaith H J, Johnston M B & HerzL M, J Phys Chem Lett, 5 (2014) 1300.
  • Herz L M, ACS Energy Lett, 2 (2017)1539.
  • Pasanen H P, Vivo P, Canil L, Hempel H, Unold T, Abate A & Tkachenko N V, J Phys Chem Lett, 11 (2020) 445.
  • Yang X, Fu Y, et al., Adv Mater, 32 (2020) 2002585.
  • Chouhan A S, Jasti N P, Hadke S, Raghavan S & Avasthi S, Curr Appl Phys, 17 (2017) 1335.
  • Bi Y, Hutter E M, Fang Y, Dong Q, Huang J & Savenije T J, J Phys Chem Lett, 7 (2016) 923.
  • Bou A, Bboliņš H A, Ashoka A, Cruanyes H, Guerrero A, Deschler F & Bisquert J, ACS Energy Lett, 6 (2021) 2248.
  • Webber D, Clegg C, Mason A W, March S A, HillI G & Hall K C, Appl Phys Lett, 111 (2017) 121905.
  • Wehrenfennig A, Liu M, Snaith H J, Johnston M B & Herz L M, Energy Environ Sci, 7 (2014) 2269.
  • Xia C Q, Peng J, et al. J Phys Chem Lett, 12 (2021) 3607.
  • Guo Z, Zhou N, Williams O F, Hu J, You W & Moran A M, J Phys Chem C, 122 (2018) 10650.
  • Savenije T J, Ponseca C S, et al., J Phys Chem Lett, 5 (2014) 2189.
  • Xing G, Mathews N, Sun S, Lim S S, LamY M, Gratzel M, Mhaisalkar S & Sum T C, Science, 342 (2013).
  • Guo Z, Wan Y, Yang M, Snaider J, Zhu K & Huang L, Science, 356 (22017) 59.
  • Guo Z, Manser J S, Wan Y, Kamat P V & Huang L, Nat Commun, 6 (2015) 7471.
  • Tian W, Zhao C, Leng J, Cui R & Jin S, J Am Chem Soc, 137 (2015) 12458.
  • Hill A H, Smyser K E, Kennedy C L, Massaro E S & Grumstrup E M, J Phys Chem Lett, 8 (2017) 948.
  • Leguy A M A, Azarhoosh P, et al., Nanoscale, 8 (2016) 6317.
  • Kanemitsu Y, J Mater Chem C, 5 (2017) 3427.
  • Bhandari K P & Ellingson R J, In book: A Comprehensive Guide to Solar Energy Systems, Letcher T M, Fthenakis V M, Eds.; Academic Press, (2018) 233.

Abstract Views: 103

PDF Views: 53




  • Modeling the Parameters of p-i-n Solar Cells Based on CH3NH3PbI3 Perovskite

Abstract Views: 103  |  PDF Views: 53

Authors

Ferdinand Gasparyan
Yerevan State University, 1 Alex Manoogian St, 0025, Yerevan, Armenia

Abstract


The simulation of short-circuit current, open-circuit voltage, absorption coefficient, fill factor and efficiency of solar cell with p-i-n structure based on organo-trihalide perovskite semiconductors CH3NH3PbI3 was carried out. Simulated data obtained for the short-circuit current density ~15÷31 mA/cm2, the open-circuit voltage ~0.99÷1.03 V, the absorption coefficient ~104cm-1 the fill factor ~82.1%÷84.8%, and the efficiency ~14.85÷27.2% are in good agreement with the results of previous numerical and experimental data for perovskites solar cells with similar composition and size. Closer to the edge of intrinsic absorption, both the short-circuit current and open-circuit voltage depend linearly on the wavelength of the incident irradiation. The calculations show the potential possibility of using perovskites in the design of tandem solar cells. The novelty of this work is the demonstration of the possibility of using thin layers of perovskite to convers solar energy. This material with direct bandgap energy provides good absorption of photons with energy>1.56 eV. In combination with the crystalline silicon, perovskite can broaden the absorption spectrum of irradiation, thereby increasing the power conversion efficiency of the tandem solar cells.

Keywords


Perovskite, Solar Cell, Short Circuit Current.

References