Open Access Open Access  Restricted Access Subscription Access

Investigating Structure and Physical Properties of Chromium Oxide Doped Bismuth Borate Glasses


Affiliations
1 Department of Physics, Baba Masthnath University Rohtak, Rohtak, Haryana 124 001, India

The glasses, composed of multiple components, contain chromium oxide x.Cr<sub>2</sub>O<sub>3</sub>.(70-x)B<sub>2</sub>O<sub>3</sub>.18Bi<sub>2</sub>O<sub>3</sub>.12Na<sub>2</sub>O, where x varies (x=0, x=0.15, x=0.25, x=0.35, x=0.50 mol %), synthesized using the melt-quench method. The amorphous nature of the synthesized samples was confirmed using X-ray diffraction (XRD). We observed that an increase in Cr<sub>2</sub>O<sub>3</sub> content resulted in a rise in the density (ρ) of the glasses, ranging from 3.88 g/cm<sup>3</sup> to 4.009 g/cm<sup>3</sup>. Notably, the molar volume displays behaviour opposite to the density trends. The oxygen packing density (OPD) exhibited augmentation with elevated chromium oxide concentrations, implying a more compact and tightly packed glass structure. Fourier transform infrared (FTIR) spectroscopic data show distinct features of the synthesized glass samples corresponding to chromium oxide content. The FTIR spectra display vibrations of metal cations and Cr3+ at around 530 cm−1, and a band at approximately 1150 cm<sup>−1</sup>, attributed to the B-O bonds with non-uniform stretching vibrations in [BO<sub>3</sub>] units. The analytical findings indicate the predominant presence of [BiO<sub>6</sub>], [BiO<sub>3</sub>], and [BiO<sub>4</sub>] vibrations in the glasses. The Raman spectroscopy affirms the presence of distinct structural units, including BiO<sub>3</sub>, BiO<sub>6</sub>, BO<sub>3</sub>, and BO<sub>4</sub>. These findings provide a foundational basis for customizing glass compositions to meet specific technological requirements, encompassing applications in optics and radiation shielding.

Keywords

Density; Molar volume; OPD; FTIR; Raman
User
Notifications
Font Size

  • Nagaraju R & Kumar K V, Int J Mech Eng, 7 (2022) 641.
  • Phani A V L, Srinivas B, Hameed A, Chary M N, Rao J L & Shareefuddin M D, Chin J Phys, 58 (2019) 303.
  • Batal F Hel, Marzouk M A & Ghan A M A, J Mater Sci, 46 (2011) 5140.
  • Sallam O I, Ezz-Eldin F M & Elalail N A, Opt Quant Electron, 52 (2020) 204.
  • Al-Buriahi M S, Alajerami Y S M, Abouhaswa A S, Alalawi A, Nutaro T & Tonguc B, J Non-Cryst Sol, 544 (2020) 120171.
  • Haritha L, Sekhar K C, Nagaraju R, Ramadevudu G, Sathe V G & Shareefuddi Md, Chin Phys B, 28 (2019) 038101.
  • Jiao M, Wua H, Lia Z, Laia F & Lia J, J Asian Ceram Soc, 9 (2021) 1320.
  • Othman A M, El-Fattah Z M A, Farouk M, Moneep A M & Hassan M A, J Non-Cryst Sol, 558 (2021) 120665.
  • Sharma V, Singh S P, Mudahar G S & Thind K S, New J Glass Ceram, 2 (2012) 128.
  • Thakur S, Thakur V, Kaur A A & Singh L L, J Non-Cryst Sol, 52 (2019) 60.
  • Pawaria S, Ahlawat J, Bala M, Dahiya S, Ohlan A, Punia R & Maan A S, J Mol Struct, 1270 (2022) 133836.
  • Nain D, Deepika, Babita & Meenakshi, Silicon, 16 (2024) 1329.
  • Nain D, Maan D, Ahlawat J & Meenakshi, Silicon, 16 (2024) 2205.
  • Wagh A, Raviprakash Y, Upadhyaya V & Kamath S D, Spectrochim Acta Part A: Mol Biomol Spectr, 151 (2015) 696.
  • Dimitriev Y & Michailovo V, Int cong Glass Madrid, 3 (1992) 293.
  • Baia L, Stefan R, Keifer W, Pop J & Simon S, J Non-Cryst Sol, 303 (2002) 379.
  • Dahiya M S, Meenakshi, Shankar A, Agarwal A & Khasa S, J Alloy Comp, 696 (2017) 688.
  • Alajerami Y S, Drabold D A, Mhreb M & Subedi K N, J Appl Phys, 127 (2020) 1.
  • Rejisha S R, Anjana P S, Gopakumar N & Santha N, J Non-Cryst Sol, 388 (2014) 68.
  • Punia R, Kundu R S, Hooda J, Dhankhar S, Dahiya S & Kishore N, J Appl Phys, 110 (2011) 33527.
  • Gautam C, Yadav A K & Singh A K, ISRN Ceram, 1 (2012) 428497.
  • Boda R, Sharfuddin M, Chary M N & Sayanna R, Inorg Mater Today Proc, 3 (2016) 1914.
  • Bala M, Pawaria S, Deopa N, Dahiya S, Ohlan A, Puni R & Maan A S, J Mol Struct, 1234 (2021) 130160.
  • Hivrekar M M, Sable D B, Solunke M B & Jadhav K M, J Non-Cryst Sol, 474 (2017) 58.
  • Meera B N & Ramakrishna J, J Non Cryst Solids, 159 (1993) 1.
  • Singh L, Thakur V, Punia R, Kundu R S & Singh A, Sol State Sci, 1 (2014) 64.
  • Aktas B, Yalcin S, Dogru K, Uzunoglu Z & Yilmaz D, Radiat Phys Chem, S0969 (2018) 30512.
  • Sangeetha G, Sekhar K C, Hameed A, Ramadevudu G, Chary M N & Shareefuddin M, J Non Cryst Sol, 563 (2021) 120784.
  • Abdel-Baki M, Abdel-Wahab F A & El-Diasty F, J Appl Phys, 111 (2012).
  • Bala M, Pawaria S, Deopa N, Dahiya S, Ohlan A, Punia R & Maan A S, J Mol Struct, 1234 (2021) 130160.
  • Abdelghany A M & Behairy A, J Mater Res Technol, 9 (2020) 10491.
  • Sumalatha B, Omkaram I, Rajavardhana R T & Raju L, Phys B: Cond Matter, 411 (2013) 99.
  • Girsova M, Goloina G, Kuilenko L & Antropova, Glass Phys Chem, 41 (2015) 93.
  • Chandrakiram G, Yadav A K & Singh A K, ISRN Ceram, 2012 (2012) 428497.
  • Rada S, Ristoiu T, Rada M, Coroiu I, Maties V & Rada C E S, Ristoiu T, Rada M, Coroiu I, Maties V & Culea E, Mater Res Bullet, 45 (2010) 69.

Abstract Views: 8




  • Investigating Structure and Physical Properties of Chromium Oxide Doped Bismuth Borate Glasses

Abstract Views: 8  | 

Authors

Deepika Maan
Department of Physics, Baba Masthnath University Rohtak, Rohtak, Haryana 124 001, India
Deepika Nain
Department of Physics, Baba Masthnath University Rohtak, Rohtak, Haryana 124 001, India
Meenakshi .
Department of Physics, Baba Masthnath University Rohtak, Rohtak, Haryana 124 001, India

Abstract


The glasses, composed of multiple components, contain chromium oxide x.Cr<sub>2</sub>O<sub>3</sub>.(70-x)B<sub>2</sub>O<sub>3</sub>.18Bi<sub>2</sub>O<sub>3</sub>.12Na<sub>2</sub>O, where x varies (x=0, x=0.15, x=0.25, x=0.35, x=0.50 mol %), synthesized using the melt-quench method. The amorphous nature of the synthesized samples was confirmed using X-ray diffraction (XRD). We observed that an increase in Cr<sub>2</sub>O<sub>3</sub> content resulted in a rise in the density (ρ) of the glasses, ranging from 3.88 g/cm<sup>3</sup> to 4.009 g/cm<sup>3</sup>. Notably, the molar volume displays behaviour opposite to the density trends. The oxygen packing density (OPD) exhibited augmentation with elevated chromium oxide concentrations, implying a more compact and tightly packed glass structure. Fourier transform infrared (FTIR) spectroscopic data show distinct features of the synthesized glass samples corresponding to chromium oxide content. The FTIR spectra display vibrations of metal cations and Cr3+ at around 530 cm−1, and a band at approximately 1150 cm<sup>−1</sup>, attributed to the B-O bonds with non-uniform stretching vibrations in [BO<sub>3</sub>] units. The analytical findings indicate the predominant presence of [BiO<sub>6</sub>], [BiO<sub>3</sub>], and [BiO<sub>4</sub>] vibrations in the glasses. The Raman spectroscopy affirms the presence of distinct structural units, including BiO<sub>3</sub>, BiO<sub>6</sub>, BO<sub>3</sub>, and BO<sub>4</sub>. These findings provide a foundational basis for customizing glass compositions to meet specific technological requirements, encompassing applications in optics and radiation shielding.

Keywords


Density; Molar volume; OPD; FTIR; Raman

References