Open Access Open Access  Restricted Access Subscription Access
Open Access Open Access Open Access  Restricted Access Restricted Access Subscription Access

A Study on the Development of New Silicone based Polymeric Outdoor Insulator Material for Enhanced Properties


Affiliations
1 University College of Engineering Kakinada, Kakinada – 533003, Andhra Pradesh, India
2 Associate professor of EEE, UCEK, Kakinada – 533003, Andhra Pradesh, India
3 Manobhu Technology Pvt Ltd, Bangalore – 560010, Karnataka, India
     

   Subscribe/Renew Journal


Polymeric insulators have been increasingly popular in recent years as a result of their superior performance in contaminated environments due to their hydrophobic properties. However, research into the ageing condition of polymeric materials and their practicality for large-scale use is currently ongoing. Insulator deterioration is caused by environmental tracking and erosion factors. As insulators age, they develop immature failures and inconsistencies in their functioning. pollution performance of polymeric insulators is a vital factor in the quality and reliability of the power system. Over some time, dry band arcing can initiate the flashover and it causes degradation in the form of erosion and tracking. Polymeric insulators’ performance is heavily influenced by the constituent materials and their properties. There is a critical need to investigate innovative filler materials that can be combined with existing polymeric base materials to form composites. In this context the proposed research use silicone rubber as a base polymeric material, to which additives are added to produce three distinct composites by varying the filler concentration. Preliminary studies were made to evaluate the hydrophobicity, dielectric strength, hardness, specific gravity, tensile strength, ultimate elongation and tear strength properties of this HTV silicone rubbed-based composites by using ASTM standards and IEC 60587 requirements. Studies were also made by accelerated ageing on sample material by using the IPTE test. The results show substantial improvement in the electrical and ageing properties

Keywords

Ageing, Dielectric Strength, Filler Material, Hardness, Inclined Plane Tracking and Erosion, Recovery of Hydrophobicity, Specific Gravity, Tear Strength, Tensile Strength, Ultimate Elongation
User
Subscription Login to verify subscription
Notifications
Font Size

  • Ravera CN. Specification for composite insulators. Eskom Specification NWS 1612; 1992.
  • EPRI. Application guide for transmission line non-ceramic insulators. Electric Power Research Institute. Final Report No. TR-111566; 1998.
  • Zhao T, Bernstorf RA. Ageing tests of polymeric housing materials for non-ceramic insulators. IEEE Electrical Insulation Magazine. 14(2):26-33. https://doi.org/10.1109/57.662784 DOI: https://doi.org/10.1109/57.662784
  • Simmons S, Shah M, Mackevich J, Chang RJ. Polymer outdoor insulating materials. Part III - Silicone elastomer considerations. IEEE Electrical Insulation Magazine. 1997; 13(5):25-32. https://doi.org/10.1109/57.620515 DOI: https://doi.org/10.1109/57.620515
  • Mackevich J, Simmons S. Polymer outdoor insulating materials. Part II - Material considerations. IEEE Electrical Insulation Magazine. 1997; 13(4):10-16. https://doi.org/10.1109/57.603554 DOI: https://doi.org/10.1109/57.603554
  • Mackevich J, Shah M. Polymer outdoor insulating materials. Part I - Comparison of porcelain and polymer electrical insulation. IEEE Electrical Insulation Magazine. 1997; 13(3):5-12. https://doi.org/10.1109/57.591510 DOI: https://doi.org/10.1109/57.591510
  • History of composite insulators. Hoechst CeramTec Communique, Wunsiedel 05.06.1990. V/H-Dr.Ki/GO; 1990.
  • Hall JF. History and bibliography of polymeric insulators for outdoor applications. IEEE Transactions on Power Delivery. 1993; 8(1):376-385. https://doi.org/10.1109/61.180359 DOI: https://doi.org/10.1109/61.180359
  • Ehsani M, Borsi H, Gockenbach E, Bakhshandeh Gr, Morshedian J. Improvement of electrical, mechanical and surface properties of silicone insulators. CEIDP. 2004 Annual Report. Boulder, USA; 2004. p. 623-626.
  • Hackam R. Outdoor HV composite polymeric insulators. IEEE Transactions on Dielectrics and Electrical Insulation. 1999; 6(5):557-585. https://doi.org/10.1109/ TDEI.1999.9286745 DOI: https://doi.org/10.1109/94.798114
  • Looms JST. Insulators for high voltage. London, United Kingdom: Peter Peregrinus Ltd; 1990.

Abstract Views: 126

PDF Views: 0




  • A Study on the Development of New Silicone based Polymeric Outdoor Insulator Material for Enhanced Properties

Abstract Views: 126  |  PDF Views: 0

Authors

Allu Shanmukha Rao
University College of Engineering Kakinada, Kakinada – 533003, Andhra Pradesh, India
N. Sumathi
Associate professor of EEE, UCEK, Kakinada – 533003, Andhra Pradesh, India
N. Vasudev
Manobhu Technology Pvt Ltd, Bangalore – 560010, Karnataka, India

Abstract


Polymeric insulators have been increasingly popular in recent years as a result of their superior performance in contaminated environments due to their hydrophobic properties. However, research into the ageing condition of polymeric materials and their practicality for large-scale use is currently ongoing. Insulator deterioration is caused by environmental tracking and erosion factors. As insulators age, they develop immature failures and inconsistencies in their functioning. pollution performance of polymeric insulators is a vital factor in the quality and reliability of the power system. Over some time, dry band arcing can initiate the flashover and it causes degradation in the form of erosion and tracking. Polymeric insulators’ performance is heavily influenced by the constituent materials and their properties. There is a critical need to investigate innovative filler materials that can be combined with existing polymeric base materials to form composites. In this context the proposed research use silicone rubber as a base polymeric material, to which additives are added to produce three distinct composites by varying the filler concentration. Preliminary studies were made to evaluate the hydrophobicity, dielectric strength, hardness, specific gravity, tensile strength, ultimate elongation and tear strength properties of this HTV silicone rubbed-based composites by using ASTM standards and IEC 60587 requirements. Studies were also made by accelerated ageing on sample material by using the IPTE test. The results show substantial improvement in the electrical and ageing properties

Keywords


Ageing, Dielectric Strength, Filler Material, Hardness, Inclined Plane Tracking and Erosion, Recovery of Hydrophobicity, Specific Gravity, Tear Strength, Tensile Strength, Ultimate Elongation

References





DOI: https://doi.org/10.33686/prj.v18i2.222172