Open Access Open Access  Restricted Access Subscription Access
Open Access Open Access Open Access  Restricted Access Restricted Access Subscription Access

In Vitro Antioxidant effect of Green Tea Polyphenol Epigallocatechin-3-Gallate (EGCG) in Protecting Cardiovascular Diseases


Affiliations
1 Bharathiyar University, Coimbatore, India
2 Department of Biochemistry, Sree Balaji Dental College and Hospital, Pallikaranai, Bharat Institute of Higher Education and Research (BIHER), India
     

   Subscribe/Renew Journal


The aim of this study focused on the beneficial effect of EGCG which possess direct antioxidant potential in scavenging the free radicals. Therefore, EGCG was considered as one of the natural antioxidant in improving the quality of life by preventing cardiovascular diseases.

Keywords

Antioxidant, Free Radicals, Cardiovascular Disease, Scavenging, EGCG-Epigallocatechin Gallate, 2,2 Diphenyl-1-Picrylhydrazyl (DPPH), Ferric Reducing Antioxidant Power (FRAP).
Subscription Login to verify subscription
User
Notifications
Font Size


  • Bahorun T., Soobrattee M. A., Luximon-Ramma V., Aruoma O. I. Free radicals and antioxidants in cardiovascular health and disease. Internet Journal of Medical Update.2006; 1:1–17.
  • Ceriello A. Possible role of oxidative stress in the pathogenesis of hypertension. Diabetes Care. 2008; 31 (Supplement 2): S181– S184.
  • Droge W. Free radicals in the physiological control of cell function. Physiological Reviews. 2002; 82:47–95.
  • Rice-Evans, C. A., Miller, N. J. & Paganga, G. (1997) Antioxidant properties of phenolic compounds. Trends Plant Sci. 2: 152–159.
  • Brown, J. E., Khodr, H., Hider, R. C. & Rice-Evans, C. A. (1998) Structural dependence of flavonoid interactions with Cu2+ ions: implications for their antioxidant properties. Biochem. J. 330: 1173–1178.
  • Blois MS. Antioxidant determinations by the use of a stable free radical. Nature 1958; 181, 1199–1200.
  • Brand-Williams, W.; Cuvelier, M. E.; Berset, C. Use of a free radical method to evaluate antioxidant activity. Lebensm. Wiss. Technol. 1995, 28, 25-30.
  • Bondet, V.; Brand-Williams, W.; Berset, C. Kinetics and mechanisms of antioxidant activity using the DPPH free radical method. Lebensm. Wiss. Technol. 1997, 30, 609-615.
  • Benzie IF, Strain JJ. The ferric reducing ability of plasma (FRAP) as a measure of ‘‘antioxidant power’’: the FRAP assay. Analytical Biochemistry 1996; 239, 70–76.
  • Benzie, I. F. F. An automated, specific, spectrophotometric method for measuring ascorbic acid in plasma (EFTSA). Clin. Biochem. 1996, 111-116.
  • Benzie, I. F. F.; Szeto, Y. T. Total antioxidant capacity of teas by the ferric reducing/antioxidant power assay. J. Agric. Food Chem. 1999, 47, 633-636.
  • Machlin, L.J., Bendich, A., 1987. Free radical tissue damage: protective role of antioxidant nutrients. FASEB J. 1, 441–445.
  • Brewer, M.S., 2011. Natural antioxidants: sources, compounds, mechanisms of action, and potential applications. Food Sci. Food Saf. 10, 221–247.
  • Karori, S.M., Wachira, F.N., Wanyoko, J.K., Ngure, R.M., 2007. Antioxidant capacity of different types of tea products. Afr. J. Biotechnol. 6, 2287–2296.
  • H. Nakamura, S. Matoba, E. Iwai-Kanai, M. Kimata, A. Hoshino, M. Nakaoka, M. Katamura, Y. Okawa, M. Ariyoshi, Y. Mita, K. Ikeda. P53 promotes cardiac dysfunction in diabetic mellitus caused by excessive mitochondrial respiration mediated reactive oxygen species generation and lipid accumulation, Circ. Heart Fail. 5 (2012) 106–115.
  • M. Chopra, K. Kaul, J. Tarr, R. Choudhury, E.M. Kohner, R. Chibber, Oxidative stress in diabetic neuropathy: source of reactive oxygen species, Endocrinol. Stud. 2 (2) (2012) 6.
  • K. Sakai, K. Matsumoto, T. Nishikawa, M. Suefuji, K. Nakamaru, Y. Hirashima, J. Kawashima, T. Shirotani, K. Ichinose, M. Brownlee, E. Araki, Mitochondrial reactive oxygen species reduce insulin secretion by pancreatic β-cells, Biochem. Biophys. Res. Commun. 300 (1) (2003) 216–222.
  • S. Fakhruddin, W. Alanazi, K.E. Jackson, Diabetes-induced reactive oxygen species: mechanism of their generation and role in renal injury, J. Diabetes Res. 2017 (2017) 30.
  • Sivakumar, P. M., Prabhakar, P. K. And Doble, M. Synthesis, antioxidant evaluation and quantitative structure-activity relationship studies of chalcones. Med. Chem. Res.19, 1–17 2010).
  • Othman, A., Ismail, A., Ghani, A. N. & Adenan, I. Antioxidant capacity and phenolic content of cocoa beans. Food Chem.100, 1523–1530 (2007).
  • Kumar, V., Lemos, M., Sharma, M. And Shriram, V. Antioxidant and DNA damage protecting activities of Eulophianuda Lindl. Free Radic. Antiox. 3, 55–60 (2013).

Abstract Views: 392

PDF Views: 0




  • In Vitro Antioxidant effect of Green Tea Polyphenol Epigallocatechin-3-Gallate (EGCG) in Protecting Cardiovascular Diseases

Abstract Views: 392  |  PDF Views: 0

Authors

K. Pramila
Bharathiyar University, Coimbatore, India
A. Julius
Department of Biochemistry, Sree Balaji Dental College and Hospital, Pallikaranai, Bharat Institute of Higher Education and Research (BIHER), India

Abstract


The aim of this study focused on the beneficial effect of EGCG which possess direct antioxidant potential in scavenging the free radicals. Therefore, EGCG was considered as one of the natural antioxidant in improving the quality of life by preventing cardiovascular diseases.

Keywords


Antioxidant, Free Radicals, Cardiovascular Disease, Scavenging, EGCG-Epigallocatechin Gallate, 2,2 Diphenyl-1-Picrylhydrazyl (DPPH), Ferric Reducing Antioxidant Power (FRAP).

References