Open Access
Subscription Access
Open Access
Subscription Access
A Review on Orthogonal Derivations in Rings
Subscribe/Renew Journal
This paper presents a brief review of derivations used in rings such as orthogonal derivation, orthogonal generalized derivation, orthogonal Jordan derivation, orthogonal symmetric derivation, and orthogonal semiderivation.
Keywords
Derivations, Orthogonal Derivation, Orthogonal Bi-Derivation, Orthogonal Generalized Derivation, Orthogonal Semi Derivation.
Subscription
Login to verify subscription
User
Font Size
Information
- N. Nobusawa, On a Generalization of the Ring Theory, Osaka J. Math. ( 1964), 81-89.
- E.C. Posner, Derivations in prime rings, Proc. Amer. Math. Soc., 8 (1957), 1093-1100.
- N. Argacet. al, (π,π) βderivations in prime rings, Math. J. Okayama Univ., 29 (1987), 173-177.
- M. Chandramouleeswaran and V. Thiruveni, on derivations of semirings, Advances in Algebra, 3 (2010), 123-131.
- J. Vukman, Symmetric bi-derivations on prime and semi-prime rings, AequationesMathematics, 40 (1989), 245-254.
- J. Vukman, Two results concerning symmetric hi-derivations on prime rings, Aequationes Mathematicae, 40(1990), 181 β 189.
- M.S. Yenigül and N. Argaç, Ideals and Symmetric Biderivations of Prime and Semiprime Rings, Math. J.O kayama Univ. 35(1993), 189-192.
- T.K. Lee, Generalized derivations of left faithful rings, Comm. Alg. 27(1999), 4057-4073.
- BojanHvala, Generalized Lie Derivations in Prime Rings, Taiwanese Journal of Mathematics, Vol.11, 5(2007), 1425-1430.
- M. A. Oztyrk and H. Yazarli, Modules Over The Generalized Centroid Of Semiprime Gamma Rings. Bull. Korean math. Soc. 44(2007), 203-213.
- Mohammad Ashraf et. al, Some Commutativity Theorems for Rings with Generalized Derivations, Southeast Asian Bulletin of Mathematics (2007), 415 β 421.
- Wu Wei and Wan Zhaoxun, Generalized Derivations in Prime Rings, Trans. Tianjin Univ.(2011), 075-078.
- C Jaya Subba Reddy et.al, Generalized Reverse Derivations On Semiprime Rings, The Bulletin of Society for Mathematical Services and Standards, Vol. 15(2015), 1-4.
- Nadeemur Rehman et. al, On commutativity of rings with generalized derivations, Journal of the Egyptian Mathematical Society (2016), 151β155.
- A. Nakajima, Generalized Jordan derivations, International Symposium on Ring Theory, Birkhauser. (2001), 295 - 311.
- Y. Ceven. and M. Ali, On Jordan Generalized Derivations In Gamma Rings, Hacettepe J of Math and statistics, 33(2004), 11-14.
- Mohammad Nagy Daifet. al, Reverse, Joran and left Biderivations, Oriental Journal Of Mathematics 2(2) (2010), PP. 65-81.
- M. Ashraf et.al, On Derivations in Rings and Their Applications, The Aligarh Bulletin of Mathematics, 25(2006), 79-107.
- AlevFirat, Some Results For Semi derivations Of Prime Rings, International Journal of Pure and Applied Mathematics, 28(3), (2006), 363-368.
- Nishteman N. Suliman and Abdul Rahman H. Majeed, Orthogonal Derivations On AnIdeal of Semiprime Gama Rings, International Mathematical Forum, Vol. 7(2012), 1405 - 1412.
- N. SuganthaMeena and M. Chandramouleeswaran, Orthogonl Derivations on Semirings, International Journal of Contemporary Mathematical Sciences, Vol.9(2014), 645-651.
- N. SuganthaMeena and M. Chandramouleeswaran, Orthogonal Derivations On Ideals of Semirings, International J. of Math. Sci. & Engg. Appls. Vol.9( 2015), 287-297.
- U. Revathy et.al, Orthogonal Reverse Derivations on Semiprime Semiring, International IOSR Journal of Mathematics, Vol.11(2015), 01 β 04.
- Ali Al Hachami KH, Orthogonal Left Derivations of Semi-Prime Rings, Journal of Generalized Lie Theory and Applications, Vol.11(2017), Issue 2, 1000270.
- Shakir Ali and Mohammad Salahuddin Khan, On Orthogonal (π,π )β Derivations In Semiprime Rings, International Electronic Journal of Algebra, Vol.13(2013), 23-39.
- M.A. Ozturk and M. Sapanci, Orthogonal symmetric bi derivation on semiprime gamma rings, Hacettepe Bulletin of Natural Sciences and Engineering, Vol. 26 (1997), 31-46.
- M.N. Daif et.al, Orthogonal Derivations and Biderivations, International Journal of Mathematical Sciences, Vol.1(2010), 23-34.
- C. Jaya Subba Reddy and B. Ramoorthy Reddy, Orthogonal Symmetric Bi Derivations In Semiprime Rings, International Journal of Mathematics and Statistics Studies, ol.4(2016), 22-29.
- C. Jaya Subba Reddy and B. Ramoorthy Reddy, Orthogonal Symmetric Bi-(π,π) β Derivations in Semiprime Rings, International Journal of Algebra, Vol.10(2016), 423-428.
- C. Jaya Subba Reddy and B. Ramoorthy Reddy, Orthogonal Generalized Symmetric Bi-Derivations of Semiprime Rings, Columbia International Publishing Contemporary Mathematics and Statistics (2017) Vol. 4 No. 1 pp. 21-27.
- Argac. N, Nakajima, and E. Albas, On orthogonal generalized derivations of semiprime rings, Turk. j. Math., 28(2004), 185-194.
- E. Albas, On ideals and orthogonal generalized derivations of semiprime rings, Math. J. Okayama Univ. 49 (2007), 53-58.
- O. Glbasi and N. Aydin, Orthogonal generalized (Ο, Ο)-derivations of semiprime rings Siberian Mathematical Journal (2007), 979β983.
- MehsinJabel Atteya. On Orthogonal generalized derivations of Semiprime rings. International Mathematical Forum, (2010), 1377 - 1384.
- N. Nishteman et. al, On Orthogonal Generalized Derivations of semiprime gamma rings, International Journal of Computational Science and Mathematics, Vol.4(2012), 113-122.
- Salah M. Salih and Hussien J. Thahab, On Orthogonal Generalized Higher πΌβ Derivation of π€ βRing M, International Mathematical Forum, Vol.8(2013), 1597 - 1603.
- Salah Mehdi Salih, Orthogonal Derivations and Orthogonal Generalized Derivations on Ξπ -modules, Iraqi Journal of Science, Vol.54(2013), 658-665.
- N. Sugantha Meena and M. Chandramouleeswaran, Orthogonal Generalized Derivations On Semirings, International Journal of Pure and Applied Mathematics, Vol.99( 2015), 97-108.
- Cheng Cheng Sun et.al, Orthogonality of Generalized (ΞΈ, Ο)-Derivations on Ideals, Journal of Mathematical Research & Exposition, Vol. 31, No. 2, 315β322.
- K. Kanak Sindhu et.al, Orthogonl Semiderivtions on Semiprime Semirings, IOSR- JM, volume 11(2015), 18 β 24.
- U. Revathy et.al, Orthogonal Reverse Semiderivations on Semiprime Semiring, Mathematical Sciences International Research Journal : Volume 4 Issue 2 (2015), 247-250
- Kyung Ho Kiml And Yong Hoon Lee, On Orthogonal Reverse Semiderivations On Prime Semirings, Gulf Journal of Mathematics, Vol.5(2017), 63-72.
- K.KanakSindhuet. al, Orthogonal Generalized Semi Derivations On SemiprimeSemirings, Mathematical Sciences International Research Journal, Issue 2(2015), 223 β 229.
- U. Revathy, Orthogonal Generalized Semderivations Of SemiprimeSemirings Mathematical Sciences International Research Journal, Vol.5(2016), 17-20.17- 20.
- M. Bresar and J. Vukman, Orthogonal derivations and extension of a theorem of posner, Radovi Mathematicki 5(1989), 237 β 246.
- Kalyan Kumar Dey et. al, Semiprime Gamma Rings with Orthogonal Reverse Derivations, International Journal of Pure and Applied mathematics, Vol.83(2013), 233-245.
- A. Kaya, Semi β Centralizing derivations in prime rings, Doga Turk. J. Math.11 (1987), 100 β 105.
- B. Hvala, Generalized derivations in rings, Comm. Algebra 26(4)1998, 1147 β 1166.
- M. Ashraf and N. Rehman, On derivations and commutativity in prime ring, East West J.Math. 3(1)(2001), 87 β 91.
- M.A. Ozturk et.al, symmetric bi-derivation on prime gamma-ring, Sci. Math., (3)2 (2000), 273-281.
- I. S. Chang et. al, On derivations in banach algebras, Bull. Korean Math. Soc., 39, No 4 (2002), 635 β 643.
- StoyanDimitrov, Derivations on Semirings, American Institute of Physics, Proceedings of the 43rd International Conference Applications of Mathematics in Engineering and Economics(2017), 060011-1-060011-22.
- C. Jaya Subba Reddy, G. Venkata Bhaskara Rao. Ideals and Symmetrc Left Bi-Derivations on Prime Rings. Research J. Science and Tech. 2017; 9(4): 601-604.
- C. Jaya Subba Reddy, M. Ramakrishna Naik. Symmetric Reverse Bi-Derivations on Prime Rings. Research J. Pharm. and Tech 2016; 9(9):1496-1500.
- K. Madhusudhan Reddy. Nonassociative rings with some Jordan product identities in the center. Research J. Pharm. and Tech. 2016; 9(12): 2319-2321.
- Raja Das, ShariefBasha. S. Solving Transportation Problem using Recurrent Neural Network. Research J. Pharm. and Tech 2016; 9(11): 1905-1908.
- Md. Shakeel, Shaik Sharief Basha, K.J Sarmasmieee. Reverse vertex magic labeling of complete graphs. Research J. Pharm. and Tech 2016; 9(10):1710-1716.
Abstract Views: 235
PDF Views: 0