Open Access Open Access  Restricted Access Subscription Access
Open Access Open Access Open Access  Restricted Access Restricted Access Subscription Access

A Review on Orthogonal Derivations in Rings


Affiliations
1 Vellore Institute of Technology, Vellore, India
2 Math Section, Information Technology Shinas College of Technology, Oman
     

   Subscribe/Renew Journal


This paper presents a brief review of derivations used in rings such as orthogonal derivation, orthogonal generalized derivation, orthogonal Jordan derivation, orthogonal symmetric derivation, and orthogonal semiderivation.

Keywords

Derivations, Orthogonal Derivation, Orthogonal Bi-Derivation, Orthogonal Generalized Derivation, Orthogonal Semi Derivation.
Subscription Login to verify subscription
User
Notifications
Font Size


  • N. Nobusawa, On a Generalization of the Ring Theory, Osaka J. Math. ( 1964), 81-89.
  • E.C. Posner, Derivations in prime rings, Proc. Amer. Math. Soc., 8 (1957), 1093-1100.
  • N. Argacet. al, (𝜎,𝜏) βˆ’derivations in prime rings, Math. J. Okayama Univ., 29 (1987), 173-177.
  • M. Chandramouleeswaran and V. Thiruveni, on derivations of semirings, Advances in Algebra, 3 (2010), 123-131.
  • J. Vukman, Symmetric bi-derivations on prime and semi-prime rings, AequationesMathematics, 40 (1989), 245-254.
  • J. Vukman, Two results concerning symmetric hi-derivations on prime rings, Aequationes Mathematicae, 40(1990), 181 – 189.
  • M.S. YenigΓΌl and N. ArgaΓ§, Ideals and Symmetric Biderivations of Prime and Semiprime Rings, Math. J.O kayama Univ. 35(1993), 189-192.
  • T.K. Lee, Generalized derivations of left faithful rings, Comm. Alg. 27(1999), 4057-4073.
  • BojanHvala, Generalized Lie Derivations in Prime Rings, Taiwanese Journal of Mathematics, Vol.11, 5(2007), 1425-1430.
  • M. A. Oztyrk and H. Yazarli, Modules Over The Generalized Centroid Of Semiprime Gamma Rings. Bull. Korean math. Soc. 44(2007), 203-213.
  • Mohammad Ashraf et. al, Some Commutativity Theorems for Rings with Generalized Derivations, Southeast Asian Bulletin of Mathematics (2007), 415 – 421.
  • Wu Wei and Wan Zhaoxun, Generalized Derivations in Prime Rings, Trans. Tianjin Univ.(2011), 075-078.
  • C Jaya Subba Reddy et.al, Generalized Reverse Derivations On Semiprime Rings, The Bulletin of Society for Mathematical Services and Standards, Vol. 15(2015), 1-4.
  • Nadeemur Rehman et. al, On commutativity of rings with generalized derivations, Journal of the Egyptian Mathematical Society (2016), 151–155.
  • A. Nakajima, Generalized Jordan derivations, International Symposium on Ring Theory, Birkhauser. (2001), 295 - 311.
  • Y. Ceven. and M. Ali, On Jordan Generalized Derivations In Gamma Rings, Hacettepe J of Math and statistics, 33(2004), 11-14.
  • Mohammad Nagy Daifet. al, Reverse, Joran and left Biderivations, Oriental Journal Of Mathematics 2(2) (2010), PP. 65-81.
  • M. Ashraf et.al, On Derivations in Rings and Their Applications, The Aligarh Bulletin of Mathematics, 25(2006), 79-107.
  • AlevFirat, Some Results For Semi derivations Of Prime Rings, International Journal of Pure and Applied Mathematics, 28(3), (2006), 363-368.
  • Nishteman N. Suliman and Abdul Rahman H. Majeed, Orthogonal Derivations On AnIdeal of Semiprime Gama Rings, International Mathematical Forum, Vol. 7(2012), 1405 - 1412.
  • N. SuganthaMeena and M. Chandramouleeswaran, Orthogonl Derivations on Semirings, International Journal of Contemporary Mathematical Sciences, Vol.9(2014), 645-651.
  • N. SuganthaMeena and M. Chandramouleeswaran, Orthogonal Derivations On Ideals of Semirings, International J. of Math. Sci. & Engg. Appls. Vol.9( 2015), 287-297.
  • U. Revathy et.al, Orthogonal Reverse Derivations on Semiprime Semiring, International IOSR Journal of Mathematics, Vol.11(2015), 01 – 04.
  • Ali Al Hachami KH, Orthogonal Left Derivations of Semi-Prime Rings, Journal of Generalized Lie Theory and Applications, Vol.11(2017), Issue 2, 1000270.
  • Shakir Ali and Mohammad Salahuddin Khan, On Orthogonal (𝜎,𝜏 )βˆ’ Derivations In Semiprime Rings, International Electronic Journal of Algebra, Vol.13(2013), 23-39.
  • M.A. Ozturk and M. Sapanci, Orthogonal symmetric bi derivation on semiprime gamma rings, Hacettepe Bulletin of Natural Sciences and Engineering, Vol. 26 (1997), 31-46.
  • M.N. Daif et.al, Orthogonal Derivations and Biderivations, International Journal of Mathematical Sciences, Vol.1(2010), 23-34.
  • C. Jaya Subba Reddy and B. Ramoorthy Reddy, Orthogonal Symmetric Bi Derivations In Semiprime Rings, International Journal of Mathematics and Statistics Studies, ol.4(2016), 22-29.
  • C. Jaya Subba Reddy and B. Ramoorthy Reddy, Orthogonal Symmetric Bi-(𝜎,𝜏) βˆ’ Derivations in Semiprime Rings, International Journal of Algebra, Vol.10(2016), 423-428.
  • C. Jaya Subba Reddy and B. Ramoorthy Reddy, Orthogonal Generalized Symmetric Bi-Derivations of Semiprime Rings, Columbia International Publishing Contemporary Mathematics and Statistics (2017) Vol. 4 No. 1 pp. 21-27.
  • Argac. N, Nakajima, and E. Albas, On orthogonal generalized derivations of semiprime rings, Turk. j. Math., 28(2004), 185-194.
  • E. Albas, On ideals and orthogonal generalized derivations of semiprime rings, Math. J. Okayama Univ. 49 (2007), 53-58.
  • O. Glbasi and N. Aydin, Orthogonal generalized (Οƒ, Ο„)-derivations of semiprime rings Siberian Mathematical Journal (2007), 979–983.
  • MehsinJabel Atteya. On Orthogonal generalized derivations of Semiprime rings. International Mathematical Forum, (2010), 1377 - 1384.
  • N. Nishteman et. al, On Orthogonal Generalized Derivations of semiprime gamma rings, International Journal of Computational Science and Mathematics, Vol.4(2012), 113-122.
  • Salah M. Salih and Hussien J. Thahab, On Orthogonal Generalized Higher π›Όβˆ’ Derivation of 𝛀 βˆ’Ring M, International Mathematical Forum, Vol.8(2013), 1597 - 1603.
  • Salah Mehdi Salih, Orthogonal Derivations and Orthogonal Generalized Derivations on Γ𝛭 -modules, Iraqi Journal of Science, Vol.54(2013), 658-665.
  • N. Sugantha Meena and M. Chandramouleeswaran, Orthogonal Generalized Derivations On Semirings, International Journal of Pure and Applied Mathematics, Vol.99( 2015), 97-108.
  • Cheng Cheng Sun et.al, Orthogonality of Generalized (ΞΈ, Ο†)-Derivations on Ideals, Journal of Mathematical Research & Exposition, Vol. 31, No. 2, 315–322.
  • K. Kanak Sindhu et.al, Orthogonl Semiderivtions on Semiprime Semirings, IOSR- JM, volume 11(2015), 18 – 24.
  • U. Revathy et.al, Orthogonal Reverse Semiderivations on Semiprime Semiring, Mathematical Sciences International Research Journal : Volume 4 Issue 2 (2015), 247-250
  • Kyung Ho Kiml And Yong Hoon Lee, On Orthogonal Reverse Semiderivations On Prime Semirings, Gulf Journal of Mathematics, Vol.5(2017), 63-72.
  • K.KanakSindhuet. al, Orthogonal Generalized Semi Derivations On SemiprimeSemirings, Mathematical Sciences International Research Journal, Issue 2(2015), 223 – 229.
  • U. Revathy, Orthogonal Generalized Semderivations Of SemiprimeSemirings Mathematical Sciences International Research Journal, Vol.5(2016), 17-20.17- 20.
  • M. Bresar and J. Vukman, Orthogonal derivations and extension of a theorem of posner, Radovi Mathematicki 5(1989), 237 – 246.
  • Kalyan Kumar Dey et. al, Semiprime Gamma Rings with Orthogonal Reverse Derivations, International Journal of Pure and Applied mathematics, Vol.83(2013), 233-245.
  • A. Kaya, Semi – Centralizing derivations in prime rings, Doga Turk. J. Math.11 (1987), 100 – 105.
  • B. Hvala, Generalized derivations in rings, Comm. Algebra 26(4)1998, 1147 – 1166.
  • M. Ashraf and N. Rehman, On derivations and commutativity in prime ring, East West J.Math. 3(1)(2001), 87 – 91.
  • M.A. Ozturk et.al, symmetric bi-derivation on prime gamma-ring, Sci. Math., (3)2 (2000), 273-281.
  • I. S. Chang et. al, On derivations in banach algebras, Bull. Korean Math. Soc., 39, No 4 (2002), 635 – 643.
  • StoyanDimitrov, Derivations on Semirings, American Institute of Physics, Proceedings of the 43rd International Conference Applications of Mathematics in Engineering and Economics(2017), 060011-1-060011-22.
  • C. Jaya Subba Reddy, G. Venkata Bhaskara Rao. Ideals and Symmetrc Left Bi-Derivations on Prime Rings. Research J. Science and Tech. 2017; 9(4): 601-604.
  • C. Jaya Subba Reddy, M. Ramakrishna Naik. Symmetric Reverse Bi-Derivations on Prime Rings. Research J. Pharm. and Tech 2016; 9(9):1496-1500.
  • K. Madhusudhan Reddy. Nonassociative rings with some Jordan product identities in the center. Research J. Pharm. and Tech. 2016; 9(12): 2319-2321.
  • Raja Das, ShariefBasha. S. Solving Transportation Problem using Recurrent Neural Network. Research J. Pharm. and Tech 2016; 9(11): 1905-1908.
  • Md. Shakeel, Shaik Sharief Basha, K.J Sarmasmieee. Reverse vertex magic labeling of complete graphs. Research J. Pharm. and Tech 2016; 9(10):1710-1716.

Abstract Views: 235

PDF Views: 0




  • A Review on Orthogonal Derivations in Rings

Abstract Views: 235  |  PDF Views: 0

Authors

Kotte Amaranadha Reddy
Vellore Institute of Technology, Vellore, India
K. Madhusudhan Reddy
Math Section, Information Technology Shinas College of Technology, Oman
S. Sharief Basha
Vellore Institute of Technology, Vellore, India

Abstract


This paper presents a brief review of derivations used in rings such as orthogonal derivation, orthogonal generalized derivation, orthogonal Jordan derivation, orthogonal symmetric derivation, and orthogonal semiderivation.

Keywords


Derivations, Orthogonal Derivation, Orthogonal Bi-Derivation, Orthogonal Generalized Derivation, Orthogonal Semi Derivation.

References