Open Access
Subscription Access
Open Access
Subscription Access
Properties of the Common Division Topology on the Set of Positive Integers
Subscribe/Renew Journal
We study properties of the common division topology T on the set of positive integers N. We prove that this space has the fixed point property. Moreover we characterize the Darboux property of polynomials which turns out to be equivalent to the continuity. In the last section we examine properties of prime numbers in the topology T.
User
Subscription
Login to verify subscription
Font Size
Information
- P. Alexandroff, Diskrete R¨aume, Mat. Sb. (N.S.), 2 (1937) 501–518.
- M. Brown, A countable connected Hausdorff space, Bull. Amer.Math. Soc., 59 (1953) 367.
- H. Furstenberg, On the infinitude of primes, Amer. Math. Monthly, 62 (1955) 353.
- S. Golomb, A connected topology for the integers, Amer. Math. Monthly, 66 (1959) 663–665.
- J. L. Kelley, General topology, Springer-Verlag, New York (1975).
- A. M. Kirch, A countable, connected, locally connected Hausdorff space, Amer. Math. Monthly, 76 (1969) 169–171.
- W. J. LeVeque, Topics in Number Theory, Vol. I,II, Dower Publications Inc., New York (2002).
- H. B. Mahdi and M. S. El Atrash, On T0-Alexandroff spaces, Journal of The Islamic University, 13 (2005) 19–46.
- G. B. Rizza, A topology for the set of non-negative integers, Riv. Mat. Univ. Parma, 5(2) (1993) 179–185.
- P. Szczuka, The connectedness of arithmetic progressions in Furstenberg’s, Golomb’s, and Kirch’s topologies, Demonstratio Math., 43(4) (2010) 899–909.
- P. Szczuka, The Darboux property for polynomials in Golomb’s and Kirch’s topologies, Demonstratio Math., 46(2), (2013) 429–435.
- P. Szczuka, Connections between connected topological spaces on the set of positive integers, Cent. Eur. J. Math., 11(5) (2013) 876–881.
- P. Szczuka, The closures of arithmetic progressions in the common division topology on the set of positive integers, Cent. Eur. J. Math., 12(7) (2014) 1008–1014.
- P. Szczuka, Properties of the division topology on the set of positive integers, Int. J. Number Theory, 12(3) (2016) 775–786.
Abstract Views: 301
PDF Views: 1