![Open Access](https://i-scholar.in/lib/pkp/templates/images/icons/fulltextgreen.png)
![Restricted Access](https://i-scholar.in/lib/pkp/templates/images/icons/fulltextred.png)
![Open Access](https://i-scholar.in/lib/pkp/templates/images/icons/fulltextgreen.png)
![Open Access](https://i-scholar.in/lib/pkp/templates/images/icons/fulltext_open_medium.gif)
![Restricted Access](https://i-scholar.in/lib/pkp/templates/images/icons/fulltextred.png)
![Restricted Access](https://i-scholar.in/lib/pkp/templates/images/icons/fulltext_restricted_medium.gif)
Un Invariant De Degre 3 Des Algebres Centrales Simples D’exposant 2
Subscribe/Renew Journal
We associate to any central simple algebra A of exponent 2 over a field of characteristic ≠2 an invariant with values in the degree 3 unramified cohomology of its Severi-Brauer variety modulo the image of the cohomology of the ground field. The main theorem is that this invariant is nonzero if and only if the index of A is ≥8.
User
Subscription
Login to verify subscription
Font Size
Information
![](https://i-scholar.in/public/site/images/abstractview.png)
Abstract Views: 257
![](https://i-scholar.in/public/site/images/pdfview.png)
PDF Views: 0