Open Access
Subscription Access
Open Access
Subscription Access
Quadratic Non-Residues Versus Primitive Roots Modulo p
Subscribe/Renew Journal
Given any ε ∈ (0, 1/2) and any positive integer s ≥ 2, we prove that for every prime
p ≥ max{s2(4/ε)2s, s651s log log(10s)}
satisfying ϕ(p − 1)/(p − 1) ≤ 1/2 − ε, where ϕ(k) is the Euler function, there are s consecutive quadratic non-residues which are not primitive ischolar_mains modulo p.
User
Subscription
Login to verify subscription
Font Size
Information
Abstract Views: 223
PDF Views: 0