Open Access Open Access  Restricted Access Subscription Access
Open Access Open Access Open Access  Restricted Access Restricted Access Subscription Access

Periodes de Modules de «L’Independance Quadratique en rang II»


Affiliations
1 Institut de mathematiques de Jussieu, Universite Pierre et Marie Curie, 4, Place Jussieu, 75005 Paris, France
2 Department de Mathematiques, Batiment M2, Universite de Sciences et Technologie de Lilfe, Cite Scientifique, 59655, Villeneuve d’ Asq Cedex, France
     

   Subscribe/Renew Journal


We show that the periods of a rank two Drinfel’d module defined over a finite extension of 𝔽q(T ) without complex multiplications are quadratically independent. Let us recall that in this set up as well as in the classical case of a commutative algebraic group defined over a number field, the only previously known case was that of linear independence (generalizations of Baker’s theorem).
User
Subscription Login to verify subscription
Notifications
Font Size

Abstract Views: 216

PDF Views: 0




  • Periodes de Modules de «L’Independance Quadratique en rang II»

Abstract Views: 216  |  PDF Views: 0

Authors

Sinnou David
Institut de mathematiques de Jussieu, Universite Pierre et Marie Curie, 4, Place Jussieu, 75005 Paris, France
Laurent Denis
Department de Mathematiques, Batiment M2, Universite de Sciences et Technologie de Lilfe, Cite Scientifique, 59655, Villeneuve d’ Asq Cedex, France

Abstract


We show that the periods of a rank two Drinfel’d module defined over a finite extension of 𝔽q(T ) without complex multiplications are quadratically independent. Let us recall that in this set up as well as in the classical case of a commutative algebraic group defined over a number field, the only previously known case was that of linear independence (generalizations of Baker’s theorem).