Open Access Open Access  Restricted Access Subscription Access
Open Access Open Access Open Access  Restricted Access Restricted Access Subscription Access

Fermetures Integrates des Z-Algebres


Affiliations
1 Institut De Mathematiques De Jussieu, UMR 9994, Case 247 Universite Pierre Et Marie Curie 4, Place Jussieu 75005-Paris, France
     

   Subscribe/Renew Journal


Let Q denote the algebraic closure of Q in C, and Z denote its ring of integers. At the 1993 Luminy workshop on Grothendieck's theory of Dessins d'Enfants, Joseph Oesterle, wanting to know more about reduction of these Dessins modulo maximal ideals of Z, asked the following question: Let E be a finite extension of Q (T) unramified outside { 0,l,∞} ; is the normalisation of P1√z in E finite overP1√z? In an unpublished letter of April 17th, 1993, Y.Ihara answered this question in the affirmative, even without assuming the ramification hypothesis.
User
Subscription Login to verify subscription
Notifications
Font Size

Abstract Views: 244

PDF Views: 0




  • Fermetures Integrates des Z-Algebres

Abstract Views: 244  |  PDF Views: 0

Authors

Joseph Oesterle
Institut De Mathematiques De Jussieu, UMR 9994, Case 247 Universite Pierre Et Marie Curie 4, Place Jussieu 75005-Paris, France
Layla Pharamond Dit D'costa
Institut De Mathematiques De Jussieu, UMR 9994, Case 247 Universite Pierre Et Marie Curie 4, Place Jussieu 75005-Paris, France

Abstract


Let Q denote the algebraic closure of Q in C, and Z denote its ring of integers. At the 1993 Luminy workshop on Grothendieck's theory of Dessins d'Enfants, Joseph Oesterle, wanting to know more about reduction of these Dessins modulo maximal ideals of Z, asked the following question: Let E be a finite extension of Q (T) unramified outside { 0,l,∞} ; is the normalisation of P1√z in E finite overP1√z? In an unpublished letter of April 17th, 1993, Y.Ihara answered this question in the affirmative, even without assuming the ramification hypothesis.