Open Access Open Access  Restricted Access Subscription Access
Open Access Open Access Open Access  Restricted Access Restricted Access Subscription Access

A Remark on a Conjecture of Chowla


Affiliations
1 Department of Mathematics, Queen’s University, Kingston, Ontario K7L 3N6, Canada
2 Department of Pure Mathematics, University of Waterloo, Waterloo, Ontario N2L 3G1, Canada
     

   Subscribe/Renew Journal


We make some remarks on a special case of a conjecture of Chowla regarding the Mobius function μ(n).
User
Subscription Login to verify subscription
Notifications
Font Size

  • S. Chowla, The Riemann hypothesis and Hilbert’s tenth problem, Mathematics and its Applications, Vol. 4, Gordon and Breach Science Publishers, New York-London-Paris (1965).
  • P. D. T. A. Elliott, On the correlation of multiplicative and the sum of additive arithmetic functions, Mem. Amer. Math. Soc., 112 (1994) no. 538.
  • H. Li and H. Pan, Bounded gaps between primes of a special form, International Mathematics Research Notices, 23 (2015) 12345–65.
  • H. Li and H. Pan, Erratum to “Bounded gaps between primes of a special form”, International Mathematics Research Notices, 21 (2016) 6732–6734.
  • K. Matomaki, M. Radziwiłl and T. Tao, An averaged form of Chowla’s conjecture, Algebra Number Theory, 9 (2015) no. 9, 2167–2196.
  • H. Montgomery and R. Vaughan, Multiplicative number theory I, classical theory, Cambridge Studies in Advanced Mathematics, Vol. 97, Cambridge University Press (2007).
  • M. Ram Murty and J. Esmonde, Problems in algebraic number theory, Second edition, Graduate Texts in Mathematics, Springer-Verlag, New York (2005) 190.
  • M. Ram Murty and A. Vatwani, Twin primes and the parity problem, Journal of Number Theory, 180 (2017) 643–659.
  • Nathan Ng, The Mobius function in short intervals, Anatomy of integers, CRM Proc. Lecture Notes, Amer. Math. Soc., Providence, RI, Edited by Jean-Marie De Koninck, Andrew Granville, Florian Luca 46 (2008) 247–257.
  • T. Tao, The Chowla conjecture and the Sarnak conjecture, available at https://terrytao.wordpress.com/2012/10/14/the-chowla-conjecture-and-the-sarnakconjecture/
  • T. Tao, The logarithmically averaged Chowla and Elliott conjectures for two-point correlations, Forum Math. Pi, 4 (2016) e8, 36pp.
  • H. Siebert and D. Wolke, Uber einige Analoga zum Bombierischen Primzahlsatz, Math. Z., 122 (1971) no. 4, 327–341.

Abstract Views: 233

PDF Views: 0




  • A Remark on a Conjecture of Chowla

Abstract Views: 233  |  PDF Views: 0

Authors

M. Ram Murty
Department of Mathematics, Queen’s University, Kingston, Ontario K7L 3N6, Canada
Akshaa Vatwani
Department of Pure Mathematics, University of Waterloo, Waterloo, Ontario N2L 3G1, Canada

Abstract


We make some remarks on a special case of a conjecture of Chowla regarding the Mobius function μ(n).

References