Open Access
Subscription Access
Open Access
Subscription Access
A Remark on a Conjecture of Chowla
Subscribe/Renew Journal
We make some remarks on a special case of a conjecture of Chowla regarding the Mobius function μ(n).
User
Subscription
Login to verify subscription
Font Size
Information
- S. Chowla, The Riemann hypothesis and Hilbert’s tenth problem, Mathematics and its Applications, Vol. 4, Gordon and Breach Science Publishers, New York-London-Paris (1965).
- P. D. T. A. Elliott, On the correlation of multiplicative and the sum of additive arithmetic functions, Mem. Amer. Math. Soc., 112 (1994) no. 538.
- H. Li and H. Pan, Bounded gaps between primes of a special form, International Mathematics Research Notices, 23 (2015) 12345–65.
- H. Li and H. Pan, Erratum to “Bounded gaps between primes of a special form”, International Mathematics Research Notices, 21 (2016) 6732–6734.
- K. Matomaki, M. Radziwiłl and T. Tao, An averaged form of Chowla’s conjecture, Algebra Number Theory, 9 (2015) no. 9, 2167–2196.
- H. Montgomery and R. Vaughan, Multiplicative number theory I, classical theory, Cambridge Studies in Advanced Mathematics, Vol. 97, Cambridge University Press (2007).
- M. Ram Murty and J. Esmonde, Problems in algebraic number theory, Second edition, Graduate Texts in Mathematics, Springer-Verlag, New York (2005) 190.
- M. Ram Murty and A. Vatwani, Twin primes and the parity problem, Journal of Number Theory, 180 (2017) 643–659.
- Nathan Ng, The Mobius function in short intervals, Anatomy of integers, CRM Proc. Lecture Notes, Amer. Math. Soc., Providence, RI, Edited by Jean-Marie De Koninck, Andrew Granville, Florian Luca 46 (2008) 247–257.
- T. Tao, The Chowla conjecture and the Sarnak conjecture, available at https://terrytao.wordpress.com/2012/10/14/the-chowla-conjecture-and-the-sarnakconjecture/
- T. Tao, The logarithmically averaged Chowla and Elliott conjectures for two-point correlations, Forum Math. Pi, 4 (2016) e8, 36pp.
- H. Siebert and D. Wolke, Uber einige Analoga zum Bombierischen Primzahlsatz, Math. Z., 122 (1971) no. 4, 327–341.
Abstract Views: 233
PDF Views: 0