![Open Access](https://i-scholar.in/lib/pkp/templates/images/icons/fulltextgreen.png)
![Restricted Access](https://i-scholar.in/lib/pkp/templates/images/icons/fulltextred.png)
![Open Access](https://i-scholar.in/lib/pkp/templates/images/icons/fulltextgreen.png)
![Open Access](https://i-scholar.in/lib/pkp/templates/images/icons/fulltext_open_medium.gif)
![Restricted Access](https://i-scholar.in/lib/pkp/templates/images/icons/fulltextred.png)
![Restricted Access](https://i-scholar.in/lib/pkp/templates/images/icons/fulltext_restricted_medium.gif)
A Note on Euclidean Cyclic Cubic Fields
Subscribe/Renew Journal
Let K be a cyclic cubic field and ΟK be its ring of integers. In this note we prove that all cyclic cubic number fields with conductors in the interval [73, 11971] and with class number one are Euclidean.
User
Subscription
Login to verify subscription
Font Size
Information
- D. Clark and M. Ram Murty, The Euclidean algorithm for Galois extensions, J. Reine Angew. Math., 459 (1995) 151–162. MR1319520 Zbl 0814.11049
- H. J. Godwin and J. R. Smith, On the Euclidean nature of four cyclic cubic fields, Math. Comp., 60 (1993) 421–423. MR1149291 Zbl 0795.11055
- M. Harper and M. RamMurty, Euclidean Rings of Algebraic Integers, Canad. J. Math., Vol. 56(1) (2004) 71–76. MR2031123 Zbl 1048.11080
- H. Heilbronn, On Euclid’s algorithm in cubic self-conjugate fields, Proc. Cambridge Philosophical Soc., 46 (1950) 377–382. MR0035313 Zbl 0036.30101
- J. W. Jones and D. P. Roberts, A database of number fields, LMS J. Comput. Math., 17(1) (2014) 595–618. MR3356048 Zbl 06638042.
- F. Lemmermeyer, The Euclidean Algorithm in Algebraic Number Fields, Exposition. Math., 13 (1995) no. 5, 385–416. MR1362867 Zbl 0843.11046.
- M. Ram Murty, K. Srinivas and M. Subramani, Admissible primes and Euclidean quadratic fields, to appear in JRMS.
- J. R. Smith, On Euclid’s algorithm in some cyclic cubic fields, J. London Math. Soc., 44 (1969) 577–582. MR0240075 Zbl 0175.04501.
![](https://i-scholar.in/public/site/images/abstractview.png)
Abstract Views: 280
![](https://i-scholar.in/public/site/images/pdfview.png)
PDF Views: 0