Open Access Open Access  Restricted Access Subscription Access
Open Access Open Access Open Access  Restricted Access Restricted Access Subscription Access

Comparing the Corank of Fine Selmer Group and Selmer Group of Elliptic Curves


Affiliations
1 Department of Mathematics and Statistics, IIT Kanpur, India
     

   Subscribe/Renew Journal


Let p be an odd prime, K be a pro-p, p-adic Lie extension of K = ℚ(μp) of dimension two containing the cyclotomic ℤp-extension Kcyc of K and H be the Galois group of K/Kcyc. Let Λ(H) be the Iwasawa algebra over H. Given an elliptic curve E defined over ℚ with good and supersingular reduction at p, we compare the Λ(H)-corank of the fine Selmer group of E over K with the Iwasawa λ-invariant of the ±-Selmer group of E over Kcyc. Using this, we find examples of elliptic curves defined over ℚ with good and supersingular reduction at p satisfying pseudo nullity conjecture over K.
User
Subscription Login to verify subscription
Notifications
Font Size

  • [CS] J. Coates and R. Sujatha, Fine Selmer group of elliptic curve over p-adic Lie extensions, Math. Ann., 331, 809–839 (2005).
  • [DD] T. Dockchitser and V. Dockchitser, Computations in non commutative Iwasawa theory, Proc. London Math. Soc. (3), 94 (2007) 211–272.
  • [HV] Y. Hachimori and O. Venjakob, Completely faithful Selmer groups over Kummer extensions, Documenta Mathematica, Extra Volume, Kato (2003) 443–478.
  • [K] Shin-ichi Kobayashi, Iwasawa theory for elliptic curves at supersingular primes, Invent. math., 152 1–36 (2003).
  • [Ka] K. Kato, p-adic Hodge theory and values of zeta functions of modular curves, Asterisque, 295 (2004) 117–290.
  • [Ku] M. Kurihara, On the Tate Shafarevich groups over cyclotomic fields of an elliptic curve with supersingular reduction I, Invent. Math., 149, 195–224 (2002).
  • [MK] M. Kurihara and R. Pollack, Two p-adic L-functions and rational points on elliptic curves with supersingular reduction. L-functions and Galois representations, London Math. Soc. Lecture Note Ser., Cambridge Univ. Press, Cambridge, 320 (2007) 300–332,
  • [O] Y. Ochi, A Remark on the Pseudo-nullity conjecture for fine Selmer groups of elliptic curves, Commentary Mathematici Universitatis sancta pauli, 58 no. 1, (2009).
  • [OV] Y. Ochi and O. Venjakob, Structure of Selmer group over p-adic Lie extensions, J. Algebraic Geometry, 11 (2002) 547–580.
  • [P] R. Pollack, On the p-adic L-function of a modular form at a supersingular prime, Duke Mathematical Journal, 118 no. 3, (2003).
  • [P1] R. Pollack, Tables of Iwasawa invariants of elliptic curves, http://math.bu.edu/people/rpollack/Data/curves1-5000.
  • [P2] R. Pollack, The main conjecture for CM elliptic curves at supersingular primes, Annals of Mathematics, 159 (2004) 447–464.
  • [V] O. Venjakob, A non-commutative Weierstrass preparation theorem and applications to Iwasawa theory, Crelle J., 559 (2003) 153–191.
  • [V1] O. Venjakob, On the structure theory of the Iwasawa algebra of a p-adic Lie group, J. Eur. Math. Soc., 4 271–311 (2002).
  • [W] C. Wuthrich, Iwasawa theory of the fine Selmer group Journal of Algebraic Geometry, 16 (2007) 83–108.

Abstract Views: 235

PDF Views: 0




  • Comparing the Corank of Fine Selmer Group and Selmer Group of Elliptic Curves

Abstract Views: 235  |  PDF Views: 0

Authors

Sudhanshu Shekhar
Department of Mathematics and Statistics, IIT Kanpur, India

Abstract


Let p be an odd prime, K be a pro-p, p-adic Lie extension of K = ℚ(μp) of dimension two containing the cyclotomic ℤp-extension Kcyc of K and H be the Galois group of K/Kcyc. Let Λ(H) be the Iwasawa algebra over H. Given an elliptic curve E defined over ℚ with good and supersingular reduction at p, we compare the Λ(H)-corank of the fine Selmer group of E over K with the Iwasawa λ-invariant of the ±-Selmer group of E over Kcyc. Using this, we find examples of elliptic curves defined over ℚ with good and supersingular reduction at p satisfying pseudo nullity conjecture over K.

References