Open Access Open Access  Restricted Access Subscription Access
Open Access Open Access Open Access  Restricted Access Restricted Access Subscription Access

Unramified Godement-Jacquet Theory for the Spin Similitude Group


Affiliations
1 Department of Mathematics, Institute for Advanced Study, Princeton, NJ 08540
     

   Subscribe/Renew Journal


Suppose F is a non-archimedean local field. The classical Godement-Jacquet theory is that one can use Schwartz-Bruhat functions on n×n matrices Mn(F) to define the local standard L-functions on GLn. The purpose of this partly expository note is to give evidence that there is an analogous and useful “approximate” Godement-Jacquet theory for the standard L-functions on the special orthogonal groups SO(V): One replaces GLn(F) with GSpin(V )(F) and Mn(F) with Clif(V )(F), the Clifford algebra of V. More precisely, we explain how a few different local unramified calculations for standard L-functions on SO(V) can be done easily using Schwartz-Bruhat functions on Clif(V )(F). We do not attempt any of the ramified or global theory of L-functions on SO(V ) using Schwartz-Bruhat functions on Clif(V ).
User
Subscription Login to verify subscription
Notifications
Font Size

  • [And67] A. N. Andrianov, Shimura’s hypothesis for Siegel’s modular group of genus 3, Dokl. Akad. Nauk SSSR, 177 (1967) 755–758.
  • [BFG95] Daniel Bump, Masaaki Furusawa and David Ginzburg, Non-unique models in the Rankin-Selberg method, J. Reine Angew. Math., 468 (1995) 77–111.
  • [BK99] Alexander Braverman and David Kazhdan, On the Schwartz space of the basic affine space, Selecta Math. (N.S.), 5 (1999) no. 1, 1–28.
  • [BK00] A. Braverman and D. Kazhdan, γ -functions of representations and lifting, Geom. Funct. Anal., (2000) No. Special Volume, Part I, 237–278, With an appendix by V. Vologodsky, GAFA 2000 (Tel Aviv, 1999).
  • [BK02] Alexander Braverman and David Kazhdan, Normalized intertwining operators and nilpotent elements in the Langlands dual group, Mosc. Math. J., 2 (2002) no. 3, 533–553, Dedicated to Yuri I. Manin on the occasion of his 65th birthday. MR 1988971.
  • [BNS16] A. Bouthier, B. C. Ngo and Y. Sakellaridis, On the formal arc space of a reductive monoid, Amer. J. Math., 138 (2016) no. 1, 81–108. MR 3462881.
  • [Cas17] William Casselman, Symmetric powers and the satake transform, B. Iran. Math. Soc., 43 (2017) no. 4, 17–54.
  • [Con] Brian Conrad, Standard parabolic subgroups: theory and examples, Available at http://math.stanford.edu/conrad/249BW16Page/handouts.html.
  • [Gar84] Paul B. Garrett, Pullbacks of Eisenstein series; applications, Automorphic forms of several variables (Katata, 1983), Progr. Math., 46 (1984) 114–137. Birkhauser Boston, Boston, MA MR 763012.
  • [Gar89] Paul B. Garrett, Integral representations of Eisenstein series and L-functions, Number theory, trace formulas and discrete groups (Oslo, 1987), Academic Press, Boston, MA, 1989, pp. 241–264. MR 993320.
  • [Get14] J. R. Getz, A summation formula for the Rankin-Selberg monoid and a non-abelian trace formula, ArXiv e-prints (2014).
  • [GJ72] Roger Godement and Herve Jacquet, Zeta functions of simple algebras, Lecture Notes in Mathematics, vol. 260, Springer-Verlag, Berlin-New York (1972). MR 0342495.
  • [GPSR87] Stephen Gelbart, Ilya Piatetski-Shapiro and Stephen Rallis, Explicit constructions of automorphic L-functions, Lecture Notes in Mathematics, vol. 1254, Springer-Verlag, Berlin (1987).
  • [GPSR97] D. Ginzburg, I. Piatetski-Shapiro, and S. Rallis, L functions for the orthogonal group, Mem. Amer. Math. Soc., 128 (1997) no. 611, viii+218. MR 1357823.
  • [Gri90] V. A. Gritsenko, Jacobi functions and Euler products for Hermitian modular forms, Zap. Nauchn. Sem. Leningrad. Otdel. Mat. Inst. Steklov., (LOMI), 183 (1990), no. Modul. Funktsii i Kvadrat. Formy. 1, 77–123, 165–166, 167–168.
  • [GS15] Nadya Gurevich and Avner Segal, The Rankin-Selberg integral with a non-unique model for the standard L-function of G2, J. Inst. Math. Jussieu, 14 (2015) no. 1, 149–184.
  • [HS83] Tatsuo Hina and Takashi Sugano, On the local Hecke series of some classical groups over p-adic fields, J. Math. Soc. Japan, 35 (1983) no. 1, 133–152.
  • [KS89] Wilfried Kohnen and Nils-Peter Skoruppa, A certain Dirichlet series attached to Siegel modular forms of degree two, Invent. Math., 95 (1989) no. 3, 541–558.
  • [Laf14] Laurent Lafforgue, Noyaux du transfert automorphe de Langlands et formules de Poisson non lineaires, Jpn. J. Math., 9 (2014) no. 1, 1–68.
  • [Li15] Wen-Wei Li, Zeta integrals, Schwartz spaces and local functional equations, ArXiv e-prints (2015).
  • [Li16] Wen-Wei Li, Basic functions and unramified local l-factors for split groups, Science China Mathematics (2016) 1–36.
  • [Mei13] Eckhard Meinrenken, Clifford algebras and Lie theory, Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge. A Series of Modern Surveys in Mathematics [Results inMathematics and Related Areas. 3rd Series. A Series of Modern Surveys in Mathematics], vol. 58, Springer, Heidelberg (2013).
  • [MS94] Atsushi Murase and Takashi Sugano, Shintani function and its application to automorphic L-functions for classical groups. I. The case of orthogonal groups, Math. Ann., 299 (1994) no. 1, 17–56. MR 1273075.
  • [Ngo14] Bao Chau Ngo, On a certain sum of automorphic L-functions, Automorphic forms and related geometry: assessing the legacy of I. I. Piatetski-Shapiro, Contemp. Math., vol. 614, Amer. Math. Soc., Providence, RI (2014) 337–43.
  • [PS] A. Pollack and S. Shah, The Spin L-function on GSp6 via a non-unique model, Amer. J. Math. (to appear).
  • [PS17] Aaron Pollack and Shrenik Shah, On the Rankin-Selberg integral of Kohnen and Skoruppa, Math. Res. Lett., 24 (2017) no. 1, 173–222.
  • [Sak] Y. Sakellaridis, Inverse Satake transforms, Proceedings of the Simons Symposium on Geometric Aspects of the Trace Formula, (to appear).
  • [Sak16] Yiannis Sakellaridis, The Schwartz space of a smooth semi-algebraic stack, Selecta Math. (N.S.), 22 (2016) no. 4, 2401–2490.
  • [Sat63] Ichiro Satake, Theory of spherical functions on reductive algebraic groups over p-adic fields, Inst. Hautes ´E tudes Sci. Publ. Math., (1963) no. 18, 5–69.
  • [Shi63] Goro Shimura, On modular correspondences for Sp(n; Z) and their congruence relations, Proc. Nat. Acad. Sci. U.S.A., 49 (1963).
  • [Shi97] Goro Shimura, Euler products and Eisenstein series, CBMS Regional Conference Series in Mathematics, vol. 93, Published for the Conference Board of the Mathematical Sciences, Washington, DC; by the American Mathematical Society, Providence, RI (1997).
  • [Sug85] Takashi Sugano, On Dirichlet series attached to holomorphic cusp forms on SO(2; q), Automorphic forms and number theory (Sendai, 1983), Adv. Stud. Pure Math., vol. 7, North-Holland, Amsterdam (1985) 333–362. MR 876110.
  • [Tam63] Tsuneo Tamagawa, On the ζ -functions of a division algebra, Ann. of Math. (2), 77 (1963) 387–405.

Abstract Views: 260

PDF Views: 1




  • Unramified Godement-Jacquet Theory for the Spin Similitude Group

Abstract Views: 260  |  PDF Views: 1

Authors

Aaron Pollack
Department of Mathematics, Institute for Advanced Study, Princeton, NJ 08540

Abstract


Suppose F is a non-archimedean local field. The classical Godement-Jacquet theory is that one can use Schwartz-Bruhat functions on n×n matrices Mn(F) to define the local standard L-functions on GLn. The purpose of this partly expository note is to give evidence that there is an analogous and useful “approximate” Godement-Jacquet theory for the standard L-functions on the special orthogonal groups SO(V): One replaces GLn(F) with GSpin(V )(F) and Mn(F) with Clif(V )(F), the Clifford algebra of V. More precisely, we explain how a few different local unramified calculations for standard L-functions on SO(V) can be done easily using Schwartz-Bruhat functions on Clif(V )(F). We do not attempt any of the ramified or global theory of L-functions on SO(V ) using Schwartz-Bruhat functions on Clif(V ).

References