![Open Access](https://i-scholar.in/lib/pkp/templates/images/icons/fulltextgreen.png)
![Restricted Access](https://i-scholar.in/lib/pkp/templates/images/icons/fulltextred.png)
![Open Access](https://i-scholar.in/lib/pkp/templates/images/icons/fulltextgreen.png)
![Open Access](https://i-scholar.in/lib/pkp/templates/images/icons/fulltext_open_medium.gif)
![Restricted Access](https://i-scholar.in/lib/pkp/templates/images/icons/fulltextred.png)
![Restricted Access](https://i-scholar.in/lib/pkp/templates/images/icons/fulltext_restricted_medium.gif)
Maximal Functions along Hypersurfaces
Subscribe/Renew Journal
In this paper, we study the Lp-boundedness of maximal operators along a class of hypersurfaces in ℝn+1 given by the graph of a function. We use a factorisation technique, which gives a simple proof of the maximal theorem. The idea is to factorise the maximal operator along hypersurface into a one-dimensional maximal operator of Hardy-Littlewood type, and a dilated maximal operator associated with a compact hypersurface in ℝn.
User
Subscription
Login to verify subscription
Font Size
Information
- J. Bourgain, Averages in the plane over convex curves and maximal operators, J. Analyse Math., 47 (1986) 69–85.
- H. Carlsson, P. Sjogren and J. O. Stromberg,Multiparameter maximal functions along dilation-invariant hypersurfaces, Trans. Amer. Math. Soc., 292 (1985) no. 1, 335–343.
- H. Carlsson and P. Sjogren, Estimates for maximal functions along hypersurfaces, Ark. Mat., 25 (1987) no. 1, 1–14.
- J. Duoandikoetxea, Multiple singular integrals and maximal functions along hypersurfaces, Ann. Inst. Fourier(Grenoble), 36 (1986) no. 4, 185–206.
- A. Greenleaf, Principal Curvature and Harmonic Analysis, Indiana univ. math. J., 30 (1981) no. 4, 519–537.
- I. A. Ikromov, M. Kempe and D. Muller, Estimates for maximal functions associated with hypersurfaces in R3 and related problems of harmonic analysis, Acta. Math., 204 (2010) no. 2, 151–271.
- H. V. Le, Maximal functions along surfaces in product spaces, J. Math. Anal. Appl., 316 (2006) no. 2, 422–432.
- C. D. Sogge, Maximal operators associated to hypersurfaces with one non-vanishing principal curvature, Stud. Adv. Math., (1995) 317–323.
- E. M. Stein, Maximal function: Spherical means, Proc. Natl. Acad. Sci. USA, 73 (1976) no. 7, 2174–2175.
- E. M. Stein and S. Wainger, Problem in harmonic analysis related to curvature, Bull. Amer. Math. Soc., 84 (1978) 1239–1295.
- J. A. Thorpe, Elementary topics in differential geometry, Springer-Verlag, New York, Graduate Studies in Mathematics, (1994).
![](https://i-scholar.in/public/site/images/abstractview.png)
Abstract Views: 276
![](https://i-scholar.in/public/site/images/pdfview.png)
PDF Views: 1