Open Access
Subscription Access
Open Access
Subscription Access
Finite Order Elements in the Integral Symplectic Group
Subscribe/Renew Journal
For g ∈ ℕ, let G = Sp(2g, ℤ) be the integral symplectic group and S(g) be the set of all positive integers which can occur as the order of an element in G. In this paper, we show that S(g) is a bounded subset of ℝ for all positive integers g. We also study the growth of the functions f (g) = |S(g)|, and h(g) = max{m ∈ ℕ | m ∈ S(g)} and show that they have at least exponential growth.
User
Subscription
Login to verify subscription
Font Size
Information
- B. Burgisser, Elements of finite order in symplectic groups, Arch. Math. (Basel), 39 no. 6, (1982) 501–509.
- Pierre Dusart, Autour de la fonction qui compte le nombre de nombres premiers, Thesis (1998).
- Pierre Dusart, Estimates of some functions over primes without R.H., arxiv:1002.0442v1.
- Benson Farb and Dan Margalit, A primer on mapping class groups, Princeton Mathematical Series, vol. 49, Princeton University Press, Princeton, NJ (2012).
- Barkley Rosser, Explicit bounds for some functions of prime numbers, Amer. J. Math., 63 (1941) 211–232.
Abstract Views: 251
PDF Views: 1