Open Access Open Access  Restricted Access Subscription Access
Open Access Open Access Open Access  Restricted Access Restricted Access Subscription Access

Zero Weight Space for Tori Inside a Division Algebra


Affiliations
1 School of Mathematics and Statistics, University of Hyderabad, Hyderabad, 500046, India
     

   Subscribe/Renew Journal


Let F be a non-Archimedean local field of residue characteristic p. Consider a division algebra D over F of index 𝓁, where 𝓁 is an odd prime and 𝓁= p. Let Ξ  be an irreducible representation of Dβˆ— with trivial central character. Let K/F be any field extension of degree 𝓁 in D. We compute the complex dimension of Kβˆ—-invariant vectors of Ο€ as both Ξ  and K vary.
User
Subscription Login to verify subscription
Notifications
Font Size

  • J. D. Adler, L. Corwin and P. J. Sally, Jr., Discrete series characters of division algebras and GLn over p-adic field, Contributions to Automorphic Forms, Geometry, and Number Theory, 2004 Baltimore, MD Johns Hopkins University Press (pg. 57–64).
  • P. Broussous, Extension du formalisme de Bushnell et Kutzko au cas d’une algebre a division, Proceedings of the London Mathematical Society, 77 (1998) 292–326.
  • L. Corwin, A. Moy and P. J. Sally, Jr., Supercuspidal character formulas for GLl, Representation Theory and Harmonic Analysis, Contemporary Mathematics, 191 (1994) 1–11.
  • A. Moy, Local constant and the tame Langlands correspondence, Amer. J. Math., 108 (1986), 863–930.
  • M. Moisio, Kloosterman sums, Elliptic curves, and irreducible polynomials with prescribed trace and norm, arXiv: 0706.2112v5.
  • D. Prasad, Some remarks on representations of quaternion division algebras, unpublished.
  • Dipendra Prasad and Dinakar Ramakrishnan, Symplectic ischolar_main numbers of two-dimensional Galois representations: an interpretation, Proc. of the Indian Acad. of Science, 105 (1995) 259–267.
  • H. Reimann, Representations of tamely ramified p-adic division and matrix algebras, Journal of Number theory, 38 (1991) 58–105.
  • G. Savin, A class of supercuspidal representations of G2(k), Canadian Math. Bulletin, CMB, 42 no. 3, (1999) 393–400.
  • J. P. Serre, Linear representations of finite groups, Springer-Verlag (1971).
  • J. Tunnell, Local -factors and characters of GL2, Amer. J. Math., 105 (1983) 1277–1308.
  • T. Takahashi, Characters of cuspidal unramified series for central simple algebras of prime degree, J. Math. Kyoto Univ., 32–4 (1992) 873–888.
  • A. Weil, Basic number theory, Springer-Verlag, New York (1986).

Abstract Views: 258

PDF Views: 1




  • Zero Weight Space for Tori Inside a Division Algebra

Abstract Views: 258  |  PDF Views: 1

Authors

Sampath Lonka
School of Mathematics and Statistics, University of Hyderabad, Hyderabad, 500046, India
Rajat Tandon
School of Mathematics and Statistics, University of Hyderabad, Hyderabad, 500046, India

Abstract


Let F be a non-Archimedean local field of residue characteristic p. Consider a division algebra D over F of index 𝓁, where 𝓁 is an odd prime and 𝓁= p. Let Ξ  be an irreducible representation of Dβˆ— with trivial central character. Let K/F be any field extension of degree 𝓁 in D. We compute the complex dimension of Kβˆ—-invariant vectors of Ο€ as both Ξ  and K vary.

References