Open Access
Subscription Access
Open Access
Subscription Access
Existence of Maximal Surface Containing Given Curve and Special Singularity
Subscribe/Renew Journal
We give a different formulation for describing maximal surfaces in Lorentz-Minkowski space, ๐3, using the identification of ๐3 with โรโ. Further we give a different proof for the singular Bjorling problem for the case of closed real analytic null curve. As an application, we show the existence of maximal surface which contains a given curve and has a special singularity.
User
Subscription
Login to verify subscription
Font Size
Information
- J. A. Aledo, J. A. Galvez and P. Mira, Bjorling representation for spacelike surfaces with H = cK in L3, Proceedings of the II International Meeting on Lorentzian Geometry, Publ. de la RSME, 8 (2004) 2โ7.
- L. J. Alias, R. M. B. Chaves and P. Mira, Bjorling problem for maximal surfaces in Lorentz-Minkowski space, Math. Proc. Cambridge Philos. Soc., 134 (2003) no. 2, 289โ316.
- F. J. M. Estudillo and A. Romero, Generalized maximal surfaces in LorentzMinkowski space L3, Math. Proc. Cambridge Philos. Soc., 111 (1992) no. 3, 515โ524.
- I. Fernandez, F. Lopez and R. Souam, The space of complete embedded maximal surfaces with isolated singularities in the 3-dimensional Lorentz-Minkowski space L3, Math. Ann., 332(3) (2005) 605โ643.
- S. Fujimori, K. Saji, M. Umehara and K. Yamada, Singularities of maximal surfaces, Math. Z., 259 (2008) 827โ848.
- T. Iwaniec, L. V. Kovalev and J. Onninen, Doubly connected minimal surfaces and extremal harmonic mappings, J. Geom Anal., 22 (2012) 726โ762.
- Y. W. Kim and S.-D. Yang, A family of maximal surfaces in Lorentz-Minkowski three-space, Proc. Amer. Math. Soc., 134 (2006) 3379โ3390.
- Y. W. Kim and S.-D. Yang, Prescribing singularities of maximal surfaces via a singular Bjorling representation formula, J. Geom. Phys., 57 (2007) no. 11, 2167โ2177.
- Y.W. Kim, S.-E. Koh, H. Shin and S.-D. Yang, Spacelike maximal surfaces, timelike minimal surfaces, and Bjorling representation formulae, Journal of Korean Math. Soc., 48 (2011) 1083โ1100.
- O. Kobayashi, Maximal surfaces with conelike singularities, J. Math. Soc., Japan, 36 no. 4, (1984).
- R. Lopez, Differential geometry of curves and surfaces in Lorentz-Minkowski space, International Electronic Journal of Geometry, 7 (2014) no. 1, 44โ107 .
- B. Oยด Neill, Semi-Riemannian geometry with applications to relativity, Academic Press, New York (1983).
- M. Umehara and K. Yamada, Maximal surfaces with singularities in Minkowski space, Hokkaido Math. J., 35 (2006) 13โ40.
Abstract Views: 285
PDF Views: 1