Open Access Open Access  Restricted Access Subscription Access
Open Access Open Access Open Access  Restricted Access Restricted Access Subscription Access

On G(λ)-Strictly Pseudocontractive Mapping in Hilbert Spaces


Affiliations
1 School of Mathematics, Statistics and Computer Science, University of KwaZulu-Natal, Durban, South Africa
     

   Subscribe/Renew Journal


The purpose of this paper is to study G(λ)-strictly pseudocontractive mapping in a Hilbert space endowed with a directed graph. Moreover, we extend the results of Tiammee et al. [Tiammee et al. On Browder’s convergence theorem and Halpern iteration process for G-nonexpansive mappings in Hilbert spaces endowed with graphs, Fixed point theory and applications (2015) 2015:187 DOI 10.1186/s13663-015-0436-9] obtained for G-nonexpansive mappings to G(λ)-strictly pseudocontractive mapping in Hilbert spaces.
User
Subscription Login to verify subscription
Notifications
Font Size

  • G. L. Acedo and H.-K. Xu, Iterative methods for strict pseudo-contractions in Hilbert spaces, Nonlinear Anal., 67 (2007) 2258–2271.
  • R. P. Agarwal and D. O. Regan and D. R. Sahu, Fixed point theory for lipschitzian type mappings with applications, Springer, New York (2009).
  • M. R. Alfuraidan, The contraction principle for mappings on a modular metric space with a graph, Fixed Point Theory Appl., 46 (2015) doi:10.1186/s13663-015-0296-3.
  • M. R. Alfuraidan, Fixed points of monotone nonexpansive mappings with a graph, Fixed Point Theory Appl., 49 (2015) doi:10.1186/s13663-015-0299-0.
  • M. R. Alfuraidan, The contraction principle for multivalued mappings on a modular metric space with a graph, Canad. Math. Bull., 29 (2015) doi:10.4153/CMB-2015-029-x.
  • M. R. Alfuraidan, On monotone C´ iric´ quasi-contraction mappings with a graph, Fixed Point Theory Appl., 93 (2015) doi:10.1186/s13663-015-0341-2.
  • M. R. Alfuraidan, On monotone pointwise contractions in Banach spaces with a graph, Fixed Point Theory Appl., 139 (2015) doi:10.1186/s13663-015-0390-6.
  • M. R. Alfuraidan, Remarks on monotone multivalued mappings on a metric space with a graph, J. Ineq. Appl., 202 (2015) doi:10.1186/s13660-015-0712-6.
  • M. R. Alfuraidan and M. A. Khamsi, Caristi fixed point theorem in metric spaces with a graph, Abstr. Appl. Anal. (2014) 303–484 doi:10.1155/2014/303484.
  • J. Bang-Jensen and G. Gutin, Digraphs theory, algorithms and applications, Springer Monographs in Mathematics, Springer, London (2007).
  • F. Bojor, Fixed point theorems for Reich type contractions on metric spaces with a graph, Nonlinear Anal., 75 (2012) 3895–3901.
  • F. E. Browder and W. V. Petryshyn, Construction of fixed points of nonlinear mappings in Hilbert spaces, J. Math. Anal. Appl., 20 (1967) 197–228.
  • C. E. Chidume, M. Abbas and B. Ali, Convergence of the Mann iteration algorithm for a class of pseudo-contractive mappings, Appl. Math. Comput., 194 (2007) 1–6.
  • C. E. Chidume and N. Shahzad, Weak convergence theorems for a finite family of strict pseudocontractions, Nonlinear Anal., 72 (2010) 1257-1265.
  • P. Cholamjiak and S. Suantai, Strong convergence for a countable family of strict pseudocontractions in q-uniformly smooth Banach spaces, Comput. Math. Appl., 62 (2011) 787–796.
  • P. Cholamjiak and S. Suantai, Weak convergence theorems for a countable family of strict pseudocontractions in Banach spaces, Fixed Point Theory Appl. (2010) 17, Article ID 632137.
  • V. Colao and G. Marino, Common fixed points of strict pseudocontractions by iterative algorithms, J. Math. Anal. Appl., 382 (2011) 631–644.
  • T. Dinevari and M. Frigon, Fixed point results for multivalued contractions on a metric space with a graph, J. Math. Anal. Appl., 405 (2013), 507–517.
  • J. Jachymski, The contraction principle for mappings on a metric space with a graph, Proc. Am. Math. Soc., 136(4) (2008) 1359–1373.
  • M. Li and Y. Yao, Strong convergence of an iterative algorithm for λ-strictly pseudocontractive mappings in Hilbert spaces, An. St. Univ. Ovidius Constanta, 18 (2010) 219–228.
  • W. R. Mann, Mean value methods in iteration, Proc. Amer. Math. Soc., 4 (1953) 506–510.
  • G. Marino and H. K. Xu, Weak and strong convergence theorems for strict pseudo-contractions in Hilbert spaces, J. Math. Anal. Appl., 329 (2007) 336–346.
  • M. O. Osilike and A. Udomene, Demiclosedness principle and convergence results for strictly pseudocontractive mappings of Browder-Petryshyn type, J. Math. Anal. Appl., 256 (2001) 431–445.
  • M. O. Osilike, A. Udomene, D. I. Igbokwe and B. G. Akuchu, Demiclosedness principle and convergence theorems for k-strictly asymptotically pseudocontractive maps, J. Math. Anal. Appl., 326 (2007) 1334–1345.
  • M. O. Osilike and Y. Shehu, Cyclic algorithm for common fixed points of finite family of strictly pseudocontractive mappings of Browder-Petryshyn type, Nonlinear Anal., 70 (2009) 3575–3583.
  • C. Pang R. Zhang, Q. Zhang and J. Wang, Dominating sets in directed graphs, Inf. Sci., 180 (2010) 3647–3652.
  • A. Sultana and A. V. Vetrivel, Fixed points of Mizoguchi-Takahashi contraction on a metric space with a graph and applications, J. Math. Anal. Appl., 417 (2014) 336–344.
  • J. Tiammee, A. Kaewkhao and S. Suantai, On Browders convergence theorem and Halpern iteration process for G-nonexpansive mappings in Hilbert spaces endowed with graphs, Fixed Point Theory and Appl. (2015) 187 doi:10.1186/s13663-015-0436-9.
  • H. K. Xu, Iterative algorithms for nonlinear operators, J. London. Math. Soc., 2 (2002) 240–256.
  • Y. Zhang and Y. Guo, Weak convergence theorems of three iterative theorems for strictly pseudocontractive mappings of Browder-Petryshyn type, Fixed Point Theory Appl. (2008) 13, Article ID 672301.
  • H. Zhang and Y. Su, Strong convergence theorems for strict pseudo-contractions in -uniformly smooth Banach spaces, Nonlinear Anal., 70 (2009) 3236–3242.
  • H. Zhang and Y. Su, Convergence theorems for strict pseudo-contractions in q-uniformly smooth Banach spaces, Nonlinear Anal., 71 (2009) 4572–4580.
  • H. Zhou, Convergence theorems for λ-strict pseudo-contractions in 2-uniformly smooth Banach spaces, Nonlinear Anal., 69 (2008) 3160–3173.

Abstract Views: 213

PDF Views: 0




  • On G(λ)-Strictly Pseudocontractive Mapping in Hilbert Spaces

Abstract Views: 213  |  PDF Views: 0

Authors

F. U. Ogbuisi
School of Mathematics, Statistics and Computer Science, University of KwaZulu-Natal, Durban, South Africa
O. T. Mewomo
School of Mathematics, Statistics and Computer Science, University of KwaZulu-Natal, Durban, South Africa

Abstract


The purpose of this paper is to study G(λ)-strictly pseudocontractive mapping in a Hilbert space endowed with a directed graph. Moreover, we extend the results of Tiammee et al. [Tiammee et al. On Browder’s convergence theorem and Halpern iteration process for G-nonexpansive mappings in Hilbert spaces endowed with graphs, Fixed point theory and applications (2015) 2015:187 DOI 10.1186/s13663-015-0436-9] obtained for G-nonexpansive mappings to G(λ)-strictly pseudocontractive mapping in Hilbert spaces.

References