Open Access
Subscription Access
Open Access
Subscription Access
Remarks on a Paper by B. Apostol and L. Toth
Subscribe/Renew Journal
We shall derive some formulas for partial sums of weighted averages over regular integers (mod n) of the generalized gcd-sum function with any arithmetical functions.
User
Subscription
Login to verify subscription
Font Size
Information
- T. M. Apostol, Introduction to analytic number theory, Springer (1984).
- B. Apostol and L. T´oth, Some remarks on regular integers modulo n, Filomat, 29 (2015) 687–701.
- I. Ege and E. Yyldyrym, Some generalized equalities for the q-gamma function, Filomat 26 (2012), 1227–1232.
- P. Haukkanen and L. T´oth, An analogue Ramanujan’s sum with respect to regular integers (mod r ), Ramanujan J., 27 (2012) 71–88.
- I. Kiuchi, M. Minamide and Y. Tanigawa, On a sum involving the M¨obius function, Acta Arith., 169 2 (2015) 149–168.
- P. J. McCarthy, Introduction to arithmetical functions, Springer (1986).
- S. S. Pillai, On an arithmetic function, J. Annamalai Univ., 2 (1937) 243–248.
- J. Singh, Defining power sums of n and φ(n) integers, Int. J. Number Theory, 5 (2009) 41–53.
- R. Sivaramakrishnan, Classical theory of arithmetic functions, Monographs and Textbooks in Pure and Applied Mathematics, Marcel Dekker, 126 (1989).
- L. T´oth, Regular integers modulo n, Annales Univ. Sci. Budapest, Sect Comp., 29 (2008) 264–275.
- L. T´oth, A gcd-sum function over regular integers modulo n, J. Integer Sequences, 12 (2009) 8, Article 09.2.5.
- L. T´oth, A survey of gcd-sum functions, J. Integer Sequences, 13 (2010) 23, Article 10.8.1.
- L. T´oth, Menon’s identity and arithmetical sums representing functions of several variables, Rend. Semin. Mat. Univ. Politec. Torino, 69 (2011) 97–110.
- D. Zhang and W. Zhai, Mean values of a gcd-sum function over regular integer modulo mod n, J. Integer Sequences, 13 (2010) 11, Article 10.3.8.
Abstract Views: 258
PDF Views: 0