Open Access Open Access  Restricted Access Subscription Access
Open Access Open Access Open Access  Restricted Access Restricted Access Subscription Access

Remarks on a Paper by B. Apostol and L. Toth


Affiliations
1 Department of Mathematical Sciences, Faculty of Science, Yamaguchi University, Yoshida 1677-1, Yamaguchi 753-8512, Japan
2 Graduate School of Mathematics, Nagoya University, Furocho, Chikusaku, Nagoya 464-8602, Japan
     

   Subscribe/Renew Journal


We shall derive some formulas for partial sums of weighted averages over regular integers (mod n) of the generalized gcd-sum function with any arithmetical functions.
User
Subscription Login to verify subscription
Notifications
Font Size

  • T. M. Apostol, Introduction to analytic number theory, Springer (1984).
  • B. Apostol and L. T´oth, Some remarks on regular integers modulo n, Filomat, 29 (2015) 687–701.
  • I. Ege and E. Yyldyrym, Some generalized equalities for the q-gamma function, Filomat 26 (2012), 1227–1232.
  • P. Haukkanen and L. T´oth, An analogue Ramanujan’s sum with respect to regular integers (mod r ), Ramanujan J., 27 (2012) 71–88.
  • I. Kiuchi, M. Minamide and Y. Tanigawa, On a sum involving the M¨obius function, Acta Arith., 169 2 (2015) 149–168.
  • P. J. McCarthy, Introduction to arithmetical functions, Springer (1986).
  • S. S. Pillai, On an arithmetic function, J. Annamalai Univ., 2 (1937) 243–248.
  • J. Singh, Defining power sums of n and φ(n) integers, Int. J. Number Theory, 5 (2009) 41–53.
  • R. Sivaramakrishnan, Classical theory of arithmetic functions, Monographs and Textbooks in Pure and Applied Mathematics, Marcel Dekker, 126 (1989).
  • L. T´oth, Regular integers modulo n, Annales Univ. Sci. Budapest, Sect Comp., 29 (2008) 264–275.
  • L. T´oth, A gcd-sum function over regular integers modulo n, J. Integer Sequences, 12 (2009) 8, Article 09.2.5.
  • L. T´oth, A survey of gcd-sum functions, J. Integer Sequences, 13 (2010) 23, Article 10.8.1.
  • L. T´oth, Menon’s identity and arithmetical sums representing functions of several variables, Rend. Semin. Mat. Univ. Politec. Torino, 69 (2011) 97–110.
  • D. Zhang and W. Zhai, Mean values of a gcd-sum function over regular integer modulo mod n, J. Integer Sequences, 13 (2010) 11, Article 10.3.8.

Abstract Views: 258

PDF Views: 0




  • Remarks on a Paper by B. Apostol and L. Toth

Abstract Views: 258  |  PDF Views: 0

Authors

Isao Kiuchi
Department of Mathematical Sciences, Faculty of Science, Yamaguchi University, Yoshida 1677-1, Yamaguchi 753-8512, Japan
Kaneaki Matsuoka
Graduate School of Mathematics, Nagoya University, Furocho, Chikusaku, Nagoya 464-8602, Japan

Abstract


We shall derive some formulas for partial sums of weighted averages over regular integers (mod n) of the generalized gcd-sum function with any arithmetical functions.

References