Open Access
Subscription Access
Open Access
Subscription Access
On a Conjecture of Bateman About r5(n)
Subscribe/Renew Journal
Let r5(n) be the number of ways of writing n as a sum of five integer squares. In his study of this function, Bateman was led to formulate a conjecture regarding the sum Σ|j|≤√n σ(n−j2) where σ(n) is the sum of positive divisors of n. We give a proof of Bateman’s conjecture in the case n is square-free and congruent to 1 (mod 4).
User
Subscription
Login to verify subscription
Font Size
Information
- P. T. Bateman, The asymptotic formula for the number of representations of an integer as a sum of five squares, Analytic Number Theory, Vol. 1 (Allerton Park, IL, 1995), 129–139, Progr. Math., 138, Birkh¨auser Boston, Boston, MA (1996).
- P. T. Bateman and M. I. Knopp, Some new old-fashioned modular identities, Paul Erdos (1913–1996). Ramanujan J., 2 no. 1–2, (1998) 247–269.
- J. Esmonde and M. Ram Murty, Problems in algebraic number theory, Graduate Texts in Mathematics, 190. Springer-Verlag, New York, (1999).
- G. H. Hardy, On the representation of a number as the sum of any number of squares, and in particular of five, Trans. Amer. Math. Soc., 21 no. 3, (1920) 255–284.
- M. Ram Murty, Problems in analytic number theory. Second edition. Graduate Texts in Mathematics, 206. Readings in Mathematics, Springer, New York (2008).
- Murty, M. Ram and Murty V. Kumar, The mathematical legacy of Srinivasa Ramanujan. Springer, New Delhi (2013).
- C. L. Siegel, Advanced analytic number theory, second edition, Tata Institute of Fundamental Research Studies in Mathematics, 9, Tata Institute of Fundamental Research, Bombay (1980).
- C. L. Siegel, Berechnung von Zetafunktionen an ganzzahligen Stellen. Nachr. Akad. Wiss. Gˆottingen, Math.-Phys. Klasse, 10 (1969) 87–102.
- R. C. Vaughan, The Hardy Littlewood Method, Cambridge University Press (1981).
- D. Zagier, On the values at negative integers of the zeta-function of a real quadratic field, Enseignement Math. (2), 22 no. 1–2, (1976) 55–95.
Abstract Views: 227
PDF Views: 0