Open Access
Subscription Access
Open Access
Subscription Access
New Infinite Families of Congruences Modulo 3, 5 and 7 For Overpartition Function
Subscribe/Renew Journal
Let ¯p(n) denote the number of overpartitions of a non-negative integer n. In this paper, we prove two new infinite families of congruences modulo 3 for ¯p(n) by using Ramanujan’s theta-function identities. Particularly, we prove that, for any integer α ≥ 0, ¯p(9α+1(24n + 23)) ≡ 0 (mod 3) and ¯p(9α+1(24n + 22) + 1) ≡ 0 (mod 3). Furthermore, we prove some new congruences modulo 5 and 7 for ¯p(n). For example, we prove that ¯p(5n+k+3) ≡ 0 (mod 5), where k = 3n2 ± n.
User
Subscription
Login to verify subscription
Font Size
Information
- A. Alaca, S. Alaca and K. S. Williams, On the two-dimensional theta functions of the Borweins, Acta Arith., 124 (2006) 177–195.
- B. C. Berndt, Ramanujan’s Notebooks, Part III, Springer-Verlag, New York (1901).
- S. Corteel and J. Lovejoy, Overpartitions, Trans. Amer. Math. Soc., 356 (2004) 1623–1635.
- J.-F. Fortin, P. Jacob and P. Mathieu, Jagged partitions, Ramanujan J., 10 (2005) 215–235.
- F. G. Garvan, A simple proof ofWaston’s partition congruences for powers of 7, J. AustralMath. Soc. (series A), 36 (1984) 316–334.
- M. D. Hirschhorn and J. A. Sellers, Arithmetic relations for overpartions, J. Combin. Math. Combin. Comput., 53 (2005) 65–73.
- M. D. Hirshhorn, Arithmetic relations for overpartitions. School of Mathematics, UNSW, Syndey 2052, Australia.
- M. D. Hirschhorn and J. A. Sellers, An infinite family of overpartition congruences modulo 12, Integers, 5 (2005) #A20.
- B. Kim, The overpartition function modulo 128, Integers., 8 (2008) #A38.
- B. Kim, A short note on the overpartition function, Discrete Math., 309 (2009) 2528–2532.
- P. A. MacMohan, Combinatory Analysis, Vol. 2, Cambridgge Univ. Press, Cambridge (1916).
- K. Mahlburg, The overpartition function small power of 2, Discrete Math., 286 (2004) 263–267.
- J. Lovejoy and R. Osburn, Quadratic forms and four partition function modulo 3, Integers, 11 (2011) #A4.
- S. Ramanujan, Collected papers, ed. G.H. Hardy. Chelsea, New York (1962).
- S. Treneer, Congruences for the coefficients of weakly holomorphic modular forms, Proc. London, Math. Soc., 93 (2006) 304–324.
- W. Y. C. Chen, H. S. Lisa, R. H.Wang and L. Zhang, Ramanujan-type congruences for overpartitions modulo 5, J. Number Theory, 148 (2015) 62–72.
- E. X. W. Xia, Congruences modulo 9 and 27 for overpartitions, Ramanujan J., 42(2) (2017) 301–323.
- E. X.W. Xia and O. X. M. Yao, New Ramanujan-like congruences modulo powers of 2 and 3 for overpartitions, J. Number Theory, 133 (2013) 1932–1949.
- X. H. Xiong, Overpartitions and ternary quadratic forms, Ramanujan J., 42(2) (2017) 429–442.
- X. Yang, S. P. Cui and B. L. S. Lin, Overpartition function modulo powers of 2, Ramanujan J., 44(1) (2017) 89–104.
Abstract Views: 485
PDF Views: 1