Open Access Open Access  Restricted Access Subscription Access
Open Access Open Access Open Access  Restricted Access Restricted Access Subscription Access

New Infinite Families of Congruences Modulo 3, 5 and 7 For Overpartition Function


Affiliations
1 Department of Mathematics, Rajiv Gandhi University, Rono Hills, Doimukh 791 112, Arunachal Pradesh, India
     

   Subscribe/Renew Journal


Let ¯p(n) denote the number of overpartitions of a non-negative integer n. In this paper, we prove two new infinite families of congruences modulo 3 for ¯p(n) by using Ramanujan’s theta-function identities. Particularly, we prove that, for any integer α ≥ 0, ¯p(9α+1(24n + 23)) ≡ 0 (mod 3) and ¯p(9α+1(24n + 22) + 1) ≡ 0 (mod 3). Furthermore, we prove some new congruences modulo 5 and 7 for ¯p(n). For example, we prove that ¯p(5n+k+3) ≡ 0 (mod 5), where k = 3n2 ± n.
User
Subscription Login to verify subscription
Notifications
Font Size

  • A. Alaca, S. Alaca and K. S. Williams, On the two-dimensional theta functions of the Borweins, Acta Arith., 124 (2006) 177–195.
  • B. C. Berndt, Ramanujan’s Notebooks, Part III, Springer-Verlag, New York (1901).
  • S. Corteel and J. Lovejoy, Overpartitions, Trans. Amer. Math. Soc., 356 (2004) 1623–1635.
  • J.-F. Fortin, P. Jacob and P. Mathieu, Jagged partitions, Ramanujan J., 10 (2005) 215–235.
  • F. G. Garvan, A simple proof ofWaston’s partition congruences for powers of 7, J. AustralMath. Soc. (series A), 36 (1984) 316–334.
  • M. D. Hirschhorn and J. A. Sellers, Arithmetic relations for overpartions, J. Combin. Math. Combin. Comput., 53 (2005) 65–73.
  • M. D. Hirshhorn, Arithmetic relations for overpartitions. School of Mathematics, UNSW, Syndey 2052, Australia.
  • M. D. Hirschhorn and J. A. Sellers, An infinite family of overpartition congruences modulo 12, Integers, 5 (2005) #A20.
  • B. Kim, The overpartition function modulo 128, Integers., 8 (2008) #A38.
  • B. Kim, A short note on the overpartition function, Discrete Math., 309 (2009) 2528–2532.
  • P. A. MacMohan, Combinatory Analysis, Vol. 2, Cambridgge Univ. Press, Cambridge (1916).
  • K. Mahlburg, The overpartition function small power of 2, Discrete Math., 286 (2004) 263–267.
  • J. Lovejoy and R. Osburn, Quadratic forms and four partition function modulo 3, Integers, 11 (2011) #A4.
  • S. Ramanujan, Collected papers, ed. G.H. Hardy. Chelsea, New York (1962).
  • S. Treneer, Congruences for the coefficients of weakly holomorphic modular forms, Proc. London, Math. Soc., 93 (2006) 304–324.
  • W. Y. C. Chen, H. S. Lisa, R. H.Wang and L. Zhang, Ramanujan-type congruences for overpartitions modulo 5, J. Number Theory, 148 (2015) 62–72.
  • E. X. W. Xia, Congruences modulo 9 and 27 for overpartitions, Ramanujan J., 42(2) (2017) 301–323.
  • E. X.W. Xia and O. X. M. Yao, New Ramanujan-like congruences modulo powers of 2 and 3 for overpartitions, J. Number Theory, 133 (2013) 1932–1949.
  • X. H. Xiong, Overpartitions and ternary quadratic forms, Ramanujan J., 42(2) (2017) 429–442.
  • X. Yang, S. P. Cui and B. L. S. Lin, Overpartition function modulo powers of 2, Ramanujan J., 44(1) (2017) 89–104.

Abstract Views: 485

PDF Views: 1




  • New Infinite Families of Congruences Modulo 3, 5 and 7 For Overpartition Function

Abstract Views: 485  |  PDF Views: 1

Authors

Jubaraj Chetry
Department of Mathematics, Rajiv Gandhi University, Rono Hills, Doimukh 791 112, Arunachal Pradesh, India
Nipen Saikia
Department of Mathematics, Rajiv Gandhi University, Rono Hills, Doimukh 791 112, Arunachal Pradesh, India

Abstract


Let ¯p(n) denote the number of overpartitions of a non-negative integer n. In this paper, we prove two new infinite families of congruences modulo 3 for ¯p(n) by using Ramanujan’s theta-function identities. Particularly, we prove that, for any integer α ≥ 0, ¯p(9α+1(24n + 23)) ≡ 0 (mod 3) and ¯p(9α+1(24n + 22) + 1) ≡ 0 (mod 3). Furthermore, we prove some new congruences modulo 5 and 7 for ¯p(n). For example, we prove that ¯p(5n+k+3) ≡ 0 (mod 5), where k = 3n2 ± n.

References