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Abstract 

 

In this study one of the most prominent macroeconomic indicators is forecasted for a 

period till 2020 which is none other than Gross Domestic Product. The historical data for 

India’s GDP is collected from the year 1951 and the growth rates are predicted for the 

same period on yearly basis. An attempt has been made to apply a-theoretic model for 

forecasting the Indian GDP and its growth rate i.e., ARIMA (Autoregressive Integrated 

Moving Average Model) and to evaluate the model’s accuracy for the same. It was found 

that the Indian GDP’s potential to grow is higher than what is observed due to adverse 

reactions. The research will be helpful for identifying the India’s potential to grow at 

macroeconomic front.  
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Introduction 

Gross Domestic Product (GDP) of a country is the money value of all final goods and services 

produced by all the enterprises within the borders of a country in a year. It represents the 

aggregate statistic of all economic activity. The performance of economy can be measured with 

the help of GDP. There are three ways in which the GDP of a country can be measured. Firstly 

the Expenditure method (which is also known as consumption and investment method or 

Income disposable method, national income is estimated by aggregating of household, business 

and government purchases of goods and services and net exports. Secondly the Income method, 

it is the sum total of factor incomes earned by the normal residents of country during a year by 

working both within and outside the country. In other words it includes the compensation of 

employees, capital income, and gross operating surplus of enterprises i.e. profit, taxes on 

production and imports less subsidies. Thirdly the Value Added method, it is equal to the sum 

of the value added at every stage of production (the intermediate stages) by all industries within 

the country, plus taxes and fewer subsidies on products in the period. 
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An accurate prediction of GDP is important to get an insight in to the future health of an 

economy. The government of a particular country can set up strategies for economic 

development on the basis of the GDP prediction. Accurate forecast of GDP with the help of 

suitable sophisticated time series modeling can provide a reliable estimate to the government for 

framing suitable economic development policies and taking decision for allocation of funds  for 

government as well as individual firms in a particular industry on the basis of different 

priorities. There were some studies which attempted to forecast GDP only as point estimates 

which has very little help for the policy makers/ managers since variability is the key in decision 

making when a certain level of risk is involved The present study is an attempt to fill the gap of 

studies attempting to forecast the GDP as well as to predict the growth rates in various forms in 

India.  

Review of Literature  
 

GDP indicates the financial health of a country as a whole-which is actually a hunting ground of 

researchers in the field of business in general and of economics in particular. The issues of GDP 

has become the most concerned amongst macro economy variables and data on GDP is 

regarded as the important index for assessing the national economic development and for 

judging the operating status of macro economy as a whole Ning et al. (2010)   

 

Tsay and Tiao (1984, 1985) used ARIMA model, which is in fact fitted on non-seasonal data by 

identifying autoregressive and moving average terms with the help of partial autocorrelation and 

autocorrelation functions (Box and Jenkins 1970:1976,Pankratz 1991). 

 

Reynolds et al. (1995) developed automatic methods to identify as well as estimate the 

parameters of ARIMA model by utilizing time-series data for a single variable.  

 

Reilly (1980) used similar methodology to model macroeconomic variable like GDP. However, 

the studies confined themselves only on non-seasonal time series data and restrained to predict 

the variable in future. 

 

However, the above mentioned methods need a long time-series data on the macroeconomic 

variable in question. To estimate the model for prediction of a macro variable, a number of 

studies imply analytical neural network techniques, which is very effective in the case of 

seasonal data (Chiu et al. 1995; Cook and Chiu 1997; Geo et al. 1997; Saad et al. 1998).  



 

These types of models have got pace since the seminal paper of Granger and Joyeux (1980) and 

Hosking (1981). However, this neural networking approach is very difficult to applying in real 

life situation by the policy makers /managers due to difficult network design, training and 

testing are required to build the model as well as to estimate the parameters. Bipasha Maity et 

al. (2012) conducted the same study for a period till 2020 using ARIMA Model.  

  

Research Methodology 
 

Data Collection 

 

In this secondary research the data has been collected for Indian Gross Domestic Product at 

Constant Price from year 1951 to 2011 annually. The data is collected from the database of 

Reserve Bank of India’s Website.  GDP Growth rates are also calculated annually. 

 

Data analysis tools & techniques 

 

Extensive algebraic analyses are carried out in time series variables such as GDP and its growth 

rate to establish normality, Stationarity, pattern of shocks, conditional mean variance, etc.  

Another branch of researchers deal with the Auto Correlation Functions (ACFs) and Partial 

Autocorrelation Functions (PACFs) to examine the presence of Stationarity in the time series 

data sets. Yet another group of studies revolve around unit root testing, cointegration testing and 

time varying nature of the time series data. Very few studies have used ARIMA models for 

forecasting even in forecasting researchers tried with lower level lags and stop with either.  

 

Conceptual Framework of ARIMA Models 
 

The publication of Time Series Analysis: Forecasting and Control by Box and Jenkins ushered 

in a new generation of forecasting tools. Popularly known as the Box-Jenkins (BJ) 

methodology, and technically known as the ARIMA methodology, the emphasis of these 

methods is not on constructing single equation or simultaneous equation models but on 

analyzing the probabilistic or stochastic properties of economic time series on their own under 

the philosophy of letting the data speak for themselves. Unlike the regression models, in which 

Yt is explained by k regressors, X1, X2, X3,…..Xk, the BJ type time series models allow Yt to be 

explained by past or lagged valued of Yt itself and stochastic error terms. For this reason, 

ARIMA models are sometimes called a-theoretic models because these are not derived from any 

economic theory, while economic theories are often the basis of simultaneous equation models. 

Let Yt be a time series sequence for t = 1, 2, ….t as: 



 

        (      )      

Where   is the mean of Yt and where ut~ ii d N(0,σ
2
 ε ), then we can say that Yt follows a first 

order Autoregressive (AR)(1). Here the value of Y at time t depends on its value in the previous 

time period and a random term. In other words, this model says that the forecast value of Y at 

time t is simply some proportion (   ) of its value at time (t – 1) plus a random shock or 

disturbance at time t, again the values are expressed around their mean values. Economic 

variables with time series data are usually non-stationary, since these are integrated. These need 

first order differencing for attaining stationarity. If a time series is integrated of order 1, its first 

differences are I(0), and it is stationary. Similarly, if a time series is I(2), its second difference is 

I(0). In general, if a time series is I(d), after differencing it d times, we obtain an I(0) series. 

Therefore , if we have to difference a time series d times to make it stationary and then apply an 

ARIMA time series, where p denotes the number of AR terms, d represents the number of 

times, the series has to be differenced before it becomes stationary, and q is the number of MA 

terms. 

 

Research Objective 

To forecast the Indian GDP (Constant) and its rate of growth from the year 2014 to 2020 using 

ARIMA Model by utilizing Time- series data over a period of 1951- 2013. 

Data Analysis and Discussion 

The major tools are ACF and PACF and resulting correlogram, which are simply the plots of 

ACFs and PACFs against the lag length
1
. In figure (1) and Table (1) & figure (2) & Table (2) 

the ACF and PACF Correlogram and values are shown. The ACF declines very slowly and 

ACF at all lags are significantly different from zero. Whereas, PACF values decline 

dramatically, and all the PACFs are insignificant after lag 1 (Table 2).  Since the data is non-

stationary it has been transformed at first difference. The results of first differenced GDP data 

indicates the presence of AR(1), I(1), MA(2), i.e. ARIMA (1,2,2) Model. 



 

 
 

 

 

 

 

 

 

 

 

 

 



 

 

 

 

 

 

 

 

 

 

Residual PACF 
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Residual ACF 
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Model Fitness 

 

Fit Statistic Mean SE Minimum Maximum 

Stationary R-squared .483 .504 .127 .839 

R-squared .529 .662 .061 .997 

RMSE 436.238 612.711 2.986 869.490 

MAPE 104.000 143.272 2.691 205.309 

MaxAPE 3.708E3 5.229E3 11.058 7405.896 

MAE 245.435 343.730 2.381 488.489 

MaxAE 2.297E3 3.235E3 9.395 4584.924 

Normalized BIC 7.929 8.024 2.256 13.603 

 

 

 

Results 

The Forecast of the Indian GDP (Constant) and Growth Rate since 2014 to year 2020 using 

ARIMA Model is as follows: 

 

Model   2014 2015 2016 2017 2018 2019 2020 

GDP-Model_1 Forecast 

67050 70316 73740 77331 81097 85046 89187 

  UCL 

74705 79642 84735 90025 95541 101308 107347 

  LCL 

60000 61833 63851 66029 68356 70826 73436 

GROWTH-

Model_2 Forecast 7.04 7.09 7.14 7.19 7.24 7.29 7.34 

  UCL 
13.07 13.15 13.22 13.30 13.38 13.46 13.54 

  LCL 1.0253 1.0486 1.0709 1.0922 1.1125 1.1317 1.1499 

 

 

Conclusion 

The results of the study comply with the norms suggested by MLE algorithm The table-6 given 

below clearly indicates the presence of autocorrelations in the forex rate distribution data over 

the period. Further, statistical validity of the model is also checked by modified Ljung-Box 

statistic. In the end, results are very impressive, and the null hypothesis is rejected that there is 

no autocorrelation in the given data, as p-value is highly significant at 5% level of significance, 

and is found to be 0.000. As per the ARIMA Model Forecast the future of Indian GDP is 



optimistic. In fact this is a very economical and effective model  to forecast GDP and its growth 

rates in India The present study will have important implications for the policy makers and the 

industrialists. Results of the study will be helpful for the policy makers to formulate effective 

policies for attracting foreign direct investment and foreign institutional investment etc. The 

findings of the study will also help the managerial executives to portrait a more precise picture 

of the economic condition of India. This will be helpful for implementing the new project ideas 

or taking decisions concerned with the expansion of the existing business. 

 Further, findings may not be best one since the researchers do not have taken into consideration 

of the models such as Regression analysis, VAR, ECM etc. to forecast GDP and its growth rates 

in India.   

 

 

  



.  

References 

Ansley, C.F. (1979), An algorithm for the exact Likelihood of a mixed autoregressive-moving 

average process, Biometrika, Vol. 66, pp. 59-65.  

 

Ard, H.J, den Reijer. (2010), Macroeconomic Forecasting using Business Cycle leading 

indicators, Stockholm: US-AB.  

 

Bipasha Maity and Bani Chatterjee (2012), Forecasting GDP Growth Rates of India: An Empirical 

Study.   International Journal of Economics and Management Sciences, Vol. 1, No.9, 2012, pp. 

52-58 

Box, G.E.P. and Jenkins, G.M. (1970), Time Series Analysis: Forecasting and Control, San 

Francisco: Holden-Day.  

 

Box, G.P. and Jenkins, G.M. (1976), Time Series Forecasting and Control, San Francisco: 

Holden-Day.  

 

Box, G.E.P., Jenkins, G.M. and Reinsel, G.C. (1994), Time Series Analysis: Forecasting and 

Control, Englewood Cliffs, NJ: Prentice Hall.  

 

Chiu, C.C., Cook, D.F. and Pignatiello, J.J. (1995), Radial basis function neural network for 

kraft pulping forecasting, International Journal of Industrial Engineering, Vol. 2 No. 2, pp. 

209-215.  

 

Cook, D.F. and Chiu, C.C. (1997), Predicting the internal bond strength of particleboard 

utilizing a radial basis function neural network, Engineering Applications AI, Vol.10 No.2, pp. 

171-177.  

 

Gao, X.M., Gao, X.Z., Tanskanen, J. and Ovaska, S.J. (1997), Power prediction in mobile 

communications systems using an optimal neural structure, IEEE Transportation Neural 

Networks, Vol. 8 No. 6, pp. 1446-1455.  

 

Granger, C.W.J. and Joyeux R. (1980), An introduction to long-memory time series models and 

fractional differencing, Journal of Time Series Analysis, Vol. 1, pp. 15-39.  

 

Enders, W. (2004), Applied Econometric Time Series, New York: John Wiley and Sons.  

Hoff, J.C. (1983), A Practical guide to Box-Jenkins Forecasting, London: Lifetime Learning 

Publications.  

 

Hosking J.R.M. (1981), Fractional differencing, Biometrica, Vol. 68, pp. 165-176.  

 

Hossain, M.Z., Samad, Q.A. and Ali, M.Z. (2006), ARIMA model and forecasting with three 

types of pulse prices in Bangladesh: A case study, International Journal of Social Economics, 

Vol. 33 No. 4, pp. 344-353.  

 

Liu, L.M. (1989), Identification of seasonal ARIMA models with using a filtering method, 

Communications in Statistics, Vol. A18, pp. 2279-2288  

 



Liu, L.M. (1999), Forecasting and time series analysis using the SCA Statistical System: Vol. 2, 

Chicago: Scientific Computing Associates Corp.  

 

Liu, L.M. and Hudak, G.B. (1992), Forecasting and time series analysis using the SCA 

Statistical System: Vol. 1 Chicago: Scientific Computing Associates Corp.  

Ljung, G.M. and Box, G.E.P. (1978), On a measure of lack of fit in time series models, 

Biometrika, Vol.65 No. 1, pp. 297-303  

 

McDowall, D., McCleary, R., Meidinger, E.E. and Hay, R. A. (1980), Interrupted time series 

Analysis, Baverly Hills, CA: Sage Publications.  

 

Melard, G. (1984), A fast algorithm for the exact likelihood of auto regressive- moving average 

models, Applied Statistics, Vol. 33, pp. 104-119  

 

Ning, W., Kuan-jiang, B. and Zhi-fa, Y. (2010), Analysis and forecast of Shaanxi GDP based 

on the ARIMA Model, Asian Agricultural Research, Vol. 2 No. 1, pp. 34-41.  

 

O'Donovan, T.M. (1983), Short Term Forecasting: An Introduction to the Box-Jenkins 

Approach, New York: John Wiley and Sons.  

 

Pankratz, A. (1983), Forecasting with Univariate Box-Jenkins models. Concepts and Cases, 

New York: John Wiley and Sons.  

 

Pankratz, A. (1991), Forecasting with dynamic regression models, New York: John Wiley and 

Sons.  

 

Reilly, D.P. (1980), Experiences with an automatic Box-Jenkins modeling algorithm. Time 

Series Analysis- Proceedings of Houstan Meeing on Time Series Analyis, Amsterdam: North-

Holland publishing.  

 

Reynolds, S.B., Mellichamp, J.M. and Smith, R.E. (1995), Box-Jenkins forecast model 

identification. AI Expert, June, pp. 15-28.  

 

Saad, E.W., Prokhorvo, D.V. and Wunsch, D.C. (1998), Comparative study of stock trend 

prediction using time delay. Recurrent and probabilistic neural networks, IEEE Transportation 

Neural Networks, Vol. 9 No. 6, pp. 1456-1469  

 

Tsay, R.S. and Tiao, G.C. (1984), Consistent estimates of autoregressive parameters and 

extended sample autocorrelation function for stationary and non-stationary ARIMA models, 

Journal of American Statistical Association, Vol. 79, pp. 84-96.  

 

Tsay, R.S. and Tiao, G.C. (1985), Use of canonical analysis in time series model identification, 

Biometrika, Vol. 72, pp. 299-315.  

 

Yang, Lu. (2009), Modeling and a forecasting China’s GDP data with time series model. Thesis 

unpublished.  

 

Vandaele, W. (1983), Applied time series and Box-Jenkins models, New York: Academic Press. 

 

 
 



 

 

 

Appendix-I 

 

 

Autocorrelations 

Series:GDP     

Lag Autocorrelation Std. Errora 

Box-Ljung Statistic 

Value df Sig.b 

1 .952 .125 58.053 1 .000 

2 .903 .124 111.167 2 .000 

3 .851 .123 159.190 3 .000 

4 .798 .122 202.074 4 .000 

5 .745 .121 240.174 5 .000 

6 .694 .120 273.819 6 .000 

7 .644 .119 303.348 7 .000 

8 .594 .117 328.929 8 .000 

9 .545 .116 350.886 9 .000 

10 .499 .115 369.616 10 .000 

11 .455 .114 385.521 11 .000 

12 .410 .113 398.731 12 .000 

13 .366 .112 409.470 13 .000 

14 .323 .111 418.007 14 .000 

15 .280 .109 424.570 15 .000 

16 .238 .108 429.422 16 .000 

17 .199 .107 432.874 17 .000 

18 .160 .106 435.151 18 .000 

19 .120 .105 436.461 19 .000 

20 .081 .103 437.076 20 .000 

21 .043 .102 437.257 21 .000 

22 .009 .101 437.264 22 .000 

23 -.026 .099 437.333 23 .000 

24 -.059 .098 437.690 24 .000 

25 -.091 .097 438.571 25 .000 

a. The underlying process assumed is independence (white noise). 

b. Based on the asymptotic chi-square approximation.  

 

 

 



 

 

 

 

 

Partial Autocorrelations 

Series:GDP  

Lag 

Partial 

Autocorrelation Std. Error 

1 .952 .128 

2 -.036 .128 

3 -.054 .128 

4 -.050 .128 

5 -.014 .128 

6 -.016 .128 

7 -.015 .128 

8 -.037 .128 

9 -.019 .128 

10 -.006 .128 

11 .000 .128 

12 -.041 .128 

13 -.030 .128 

14 -.022 .128 

15 -.028 .128 

16 -.023 .128 

17 -.010 .128 

18 -.031 .128 

19 -.043 .128 

20 -.021 .128 

21 -.025 .128 

22 -.007 .128 

23 -.036 .128 

24 -.015 .128 

25 -.035 .128 

 
 

 


