
Abstract
In this paper, the Complement of Interval Valued Intuitionistic Fuzzy Graph (CIVIFG) is introduced and a few  properties are 
analyzed. Several characteristics of self-complement, self weak complement and self co-weak complement of  interval-valued 
intuitionistic fuzzy graphs are also investigated. 

Complement of Interval Valued Intuitionistic  
Fuzzy Graphs

P. Kousalya* and S. Pachiyammal

Department of Mathematics, Nandha Arts and Science College, Erode – 638052, Tamilnadu, India;  
ramya8848@gmail.com, tamil055@gmail.com 

Keywords: Complement of Fuzzy Graph, Complement of Interval-valued Intuitionistic Fuzzy Graph (CIVIFG), Fuzzy Graph, 
Interval-valued Intuitionistic Fuzzy Graph (IVIFG)

1. Origin of the Study
Zadeh [1] introduced the concept of uncertainty in 1965, 
which was described by a fuzzy set. Now-a-days the 
 theory of fuzzy sets turned out to be a significant con-
cept of investigation in different areas including Logic, 
Topology, Algebra, Analysis etc. 

Rosenfeid [2] introduced fuzzy graphs and obtained 
several theoretical concepts. Sunitha and Vijayakumar [3] 
studied the properties of complementary fuzzy graphs. 
The interval-valued fuzzy set is an expansion of fuzzy set, 
in which the degrees of association are the intervals of 
members. Atanassov [4] initiated intuitionistic fuzzy set 
which is represented by association and non-association 
values. 

Muhammad, Akram, and Wieslaw A. Dudek [5] 
defined the interval-valued fuzzy graphs and a few 
operations on them. Talebi, A. A., and H. Rashmanlou 
[6] studied the properties of isomorphism and CIVFG. 
A. Mohamed Ismayil and Mohamed Ali [10] studied 
the strong interval-valued intuitionistic fuzzy graphs. 
Section 2 includes basic definitions related to the study. 
Section 3 introduces the description of CIVIFGs. The 
features of self-complement, self weak and co-weak com-
plement of CIVIFG are analyzed. Section 4  concludes 
the paper.

2.  Basic Definitions
Definition 2.1 [1]
The boundaries of fuzzy sets are not accurate in the 
 membership function which is defined by 0 ≤ µA (x) ≤ 1.

Definition 2.2 [2]
A fuzzy graph G = (V, E) is a set of functions V : X → [0,1] 
and E : X × X → [0,1] such that µ (x, y) ≤ µ (x) Λ µ (y) for 
all x and y in V. Λ represents the minimum.

Definition 2.3 [5]
Let D[0,1] be the closed sub intervals of [0,1] and Let  
M = [ML, MU] which belongs to [0,1]. MU and ML denote 
the upper limits and lower limits of M.

Definition 2.4 [7]
If G G≅  then the fuzzy graph is said to be self-complement. 
That is, there exists a isomorphism f : G G→ .

Definition 2.5 [5]
An IVFG is a pair of functions G = (A, B) of G* = (V, E) such 
that, A = [MAL, MAU] & B = [MBL, MBL] denote the IVFSs on 
V and the fuzzy relation on E respectively, where MAL, MAU: 
V → D[0, 1] & MBL , MBU: V × V → D[0,1] such that

MAL(x) ≤ MAU(x) ∀ x ∈ V
MBL(xy) ≤ (MAL(x) Λ MAL(y))
MBU(xy) ≤ (MAU(x) Λ MAU(y))     ∀ x, y ∈ E.
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Example 2.1[5] 
G = (A, B) be a fuzzy graph such that V = {a, b, c}, E = {ab, 
bc, ca}, where A and B are the IVFS of V and relation of  
E ⊆ V × V respectively.

3. Complement of IVIFG
Definition 3.1
The CIVIFG G = (A, B) is an IVIFG with G A B= ( ),  where
A A M MA A= = =[ , ]& [ , ]B M NB B is defined by,

 
M xy M x M y M xyBL AL AL BL( ) = ( ) ( )( ) −Λ (( )

 
M xy M x M y M xyBU AU AU BU( ) = ( ) ( )( ) −Λ (( )

N xy max N x N y N xyBL AL AL BL( ) = ( ) ( )( ) −, (( )

 
N xy max N x N y N xyBU AL AU BU( ) = ( ) ( )( ) −, (( )

 such that 0 ≤ MB(xy) + NB(xy) ≤ 1   ∀ xy ∈ E.

Definition 3.2
Let G1 and G2 be the IVIFG of G = (A, B). The 
 homomorphism of G1 and G2 is defined by a map such 
that f :V1 → V2 holds the following:

a. M x M f xA L A L1 2
( ) ≤ ( )( )

 
M x M f xA U A U1 2

( ) ≤ ( )( )
 

N x N f xA L A L1 2
( ) ≥ ( )( )

 
N x N f xA U A U1 2

( ) ≥ ( )( )and

b. M xy M f x f yB L LB1 2
( ) ≤ ( )( ), ( )

 
M xy M f x f yB U UB1 2

( ) ≤ ( )( ), ( )

 
N xy N f x f yB L LB1 2

( ) ≥ ( )( ), ( )

 
N xy M f x f yB U UB1 2

( ) ≤ ( )( ), ( )

 for every x ∈Vl, xy∈E1.

Definition 3.3
Let G1 and G2 be the IVIFG8 of G = (A, B). The weak 
 isomorphism of G1 and G2 is defined by a map such that 
f :V1 → V2 holds the following:

a. f is homomorphism. 
b. M z M f zA L LA1 2

( ) = ( )( )

 
M z M f zA U UA1 2

( ) = ( )( )

 
N z N f zA L LA1 2

( ) = ( )( )

 
N z N f z z VA U UA1 2

( ) = ( )( )∀ ∈ 1.

Figure 1. Interval-valued Fuzzy Graph.

Definition 2.6 [10]
An IFG G = (A, B) satisfies the following conditions:

1. MA:VÆ[0, 1] and NA:VÆ[0,1] denote the member-
ship and non-membership degrees of y ∈ V such that, 

 0 ≤ MA(y) + NA(y) ≤ 1 ∀ y, ∈ V.
2. MB:V × VÆ[0.1] and NB:V × VÆ[0,1] are defined by,
 MB(xy) ≤ (MA(x) Λ MA(y)) and
 NB(xy) ≥ max(NA(x), NA(y))

such that 0 ≤ MB(xy) + NB(xy) ≤ 1     ∀ xy ∈ E.

Definition 2.7 [10]
An IVIFG of a graph G = (A, B) holds the following 
 conditions:

1. The functions MAL:VÆ[0.1], MAU:VÆ[0.1] and 
NAL:VÆ[0,1] NAU:VÆ[0,1] are denotes the  membership 
and non membership degrees of such that 0 ≤ MA(x) + 
NA(x) ≤ 1 for all x ∈ V.

2. The functions MBL: V × V→[0,1], 
 MBU:V × V→[0,1], NBL:V × V→[0,1] and 
 NBU: V × V→[0,1] are denoted by,
 MBL((xy) ≤ (MAL(x) Λ MAL(y))
 MBU((xy) ≤ (MAU(x) Λ MAU(y))

NBL((xy) ≥ max(NAL(x), NAL(y))
NBU((xy) ≥ max(NAU(x), NAU(y))

 such that 0 ≤ MB (xy) + NB (xy) ≤ 1  ∀ xy ∈ E.
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Definition 3.4
Let G1 and G2 be the IVIFG of G = (A, B). The co - weak 
isomorphism of G1 and G2 is defined by a map such that 
f :V1 → V2 holds the following:

a. f is homomorphism.
b. M xy M f x f yB L LB1 2

( ) = ( ) ( )( ),

 
M xy M f x f yB U UB1 2

( ) = ( ) ( )( ),

 
N xy N f x f yB L LB1 2

( ) = ( ) ( )( ),

 
N xy M f x f yB U UB1 2

( ) = ( ) ( )( ),

 for all x ∈Vl, xy∈E1.

Definition 3.5
G1 = (A1, B1) & G2 = (A2, B2) be the IVIFG of G = (V, E). 
An isomorphism of and is a mapping such that f :V1 → V2 
holds the following:

a. M x M f xA L LA1 2
( ) = ( )( )

 
M x M f xA U UA1 2

( ) = ( )( )
 

N x N f xA L LA1 2
( ) = ( )( )

 
N x N f xA U UA1 2

( ) = ( )( )
b. M xy M f x f yB L LB1 2

( ) = ( ) ( )( ),

 
M xy M f x f yB U UB1 2

( ) = ( ) ( )( ),

 
N xy N f x f yB L LB1 2

( ) = ( ) ( )( ),

 
N xy N f x f yB U UB1 2

( ) = ( ) ( )( ),

 for all x ∈Vl, xy∈E1.

3.1 Self-complement IVIFGs
Definition 3.1.1
An IVIFG G = (A, B) is said to be a self-complement 
then. G G≅  i.e., there exist a bijective homomorphism 
f : G G1 →  such that for all x, y ∈V.

i. M x M f xAL LA1 1( ) = ( )( )
 

M x M f xAU UA1 1( ) = ( )( )
 

N x N f xAL LA1 1( ) = ( )( )
 

N x N f xAU UA1 1( ) = ( )( )

ii. M x y M f x f yBL LB1 1 1 1( ) = ( ) ( )( ),

 
M x y M f x f yBU UB1 1 1 1( ) = ( ) ( )( ),

 
N x y N f x f yBL LB1 1 1 1( ) = ( ) ( )( ),

 
N x y N f x f yBU UB1 1 1 1( ) = ( ) ( )( ),

 for all x1, y1 ∈V, x1y1 ∈E.

Theorem 3.1.2
The self-complement IVIFG G = (V, E) satisfies the 
 following conditions:

M xy M x M yBL AL AL∑ ∑( ) = 1
2

( ( ) ( ))Λ

M xy M x M yBU AU AU∑ ∑( ) = 1
2

( ( ) ( ))Λ

N xy N x N yBL AL AL∑ ∑( ) = 1
2

max( ( ), ( ))

N xy N x N yBU AU AU∑ ∑( ) = ≠1
2

max( ( ), ( )) for every x y

Proof
If G be a self-complement of IVIFG, then (3.1.1) exists for 
all x ∈V, xy∈E.

From Definition 3.1, the complement of IVIFGs can be  
written as,

M xy M x M y M xyBL AL AL BL( ( ( () ) ) )= ( ) −Λ

M xy M x M y M xyBU AU AU BU( ( ( () ) ) )= ( ) −Λ

N xy N x N y N xyBL AL AL BL( ) ( ( (), ) )= ( ) −max

N xy N x N y N xyBU AU AU BU( ) ( ( (), ) )= ( ) −max

That is, 

M xy M xy M x M yBL BL AL AL∑ ∑+ =( ) ( ) ( (( ) ))Λ

M xy M xy M x M yBU BU AU AU∑ ∑+ =( ) ( ) ( (( ) ))Λ

N xy N xy N x N yBL BL AL AL∑ ∑+ =( ) ( ) ( (max( ), ))

N xy N xy N x N yBU BU AU AU∑ ∑+ =( ) ( ) ( (max( ), ))

From these equations, theorem 3.1.2 holds.
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3.2 Self Weak Complement of IVIFGs
Definition 3.2.1
An IVIFG is self weak complement, then G is a weak 
 isomorphism with its complement G . That is, there exists 
a mapping which is bijective homomorphism f G G: →  
such that 

i. M x M f xAL AL( ) = ( )( )

 M x M f xAU AU( ) = ( )( )

 N x N f xAL AL( ) = ( )( )

 N x N f xAU AU( ) = ( )( )

ii. M xy M f x f yBL BL( ) ≤ ( )( (), )

 
M xy M f x f yBU BU( ) ≤ ( )( (), )

 
N xy N f x f yBL BL( ) ≥ ( )( (), )

 
N xy N f x f yBU BU( ) ≥ ( )( (), )

 for every x ∈V and xy∈E.

Example 3.2.1
Let V = {h, i, j} and E = {hi, ij} are the components of  
G =  (V, E). The self weak complement IVIFG G = (A, B), 
where 

N xy N x N yBL AL AL∑ ∑( )≥ 1
2

max( ( ), ( ))

N xy N x N yBU AU AU∑ ∑( )≥ 1
2

max( ( ), ( ))

Proof
If G is a self weak complement IVIFG, then Definition 
3.2.1 holds for all x, y ∈ V.

From Definition 3.1, the complement of IVIFGs is 
defined by,

M xy M x M y M x yf f fBL AL AL BL( ( ( ( ( ( ( () ) ) ), ))≤ ( ) −Λ f

M xy M x M y M x yf f f fBU AU AU BU( ( ( ( ( ( ( () ) ) ), ))≤ ( ) −Λ

N xy N x N y N x yf f f fBL AL AL BL( ( ( ( ( ( ( () ), ) ), ))≥ ( ) −max

N xy N x N y N x yf f f fBU AU AU BU( ( ( ( ( ( ( () ), ) ), ))≥ ( ) −max

That is, 

M xy M xy M x MBL BL AL AL( ) ( ) ( ( ) (y))+ ≤∑ ∑ Λ

M xy M xy M x MBU BU AU AU( ) ( ) ( ( ) (y))+ ≤∑ ∑ Λ

N xy N xy N x NBL BL AL AL( ) ( ) max( ( ), (y))+ ≥∑ ∑
N xy N xy N x NBU BU AU AU( ) ( ) max( ( ), (y))+ ≥∑ ∑

From these equations, theorem 3.2.2 is proved.

Remark 3.1
The co-weak complement of an IVIFG doesn’t exist.

4. Conclusion
This paper introduces the complement of interval-valued 
intuitionistic fuzzy graphs (CIVIFG) and certain prop-
erties of self-complement, self-weak complement and 
self co-weak complement of IVIFGs. This paper helps to 
derive further results from IVIFGs and its complements. 
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Figure 2. Self weak complement IVIFG.

Theorem 3.2.2
Let G be a self weak complement IVIFG then for every  
x ≠ y,

M xy M x M yBL AL AL∑ ∑( )≤ 1
2

( ( ) ( ))Λ

M xy M x M yBU AU AU∑ ∑( )≤ 1
2

( ( ) ( ))Λ
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