Open Access Open Access  Restricted Access Subscription Access
Open Access Open Access Open Access  Restricted Access Restricted Access Subscription Access

Emergence of Zebrafish as a Biomarker for Pesticide Poisoning in Forensic Toxicology Research


Affiliations
1 Laboratory of Analytical and Molecular Toxicology (Forensic Chemistry and Toxicology Laboratory), Institute of Forensic Science, Gujarat Forensic Sciences University, Sector 09, Gandhinagar – 382007, Gujarat, India
     

   Subscribe/Renew Journal


Forensic toxicology is the branch of forensic science which utilizes toxicology, pharmacology and analytical chemistry to help in legal investigations of suicidal, homicidal and accidental poisoning cases. Accidental poisoning cases related to occupational exposure of pesticides are also very common. Zebrafish is a versatile model organism that has been used as a model organism in different field of science, has various practical advantages over other vertebrate models. Present review summarizes the effects of pesticides and the use of adult zebrafish as a model organism in forensic toxicology research to understand the symptoms/effects and mechanism of pesticide poisoning.

Keywords

Forensic Science, Forensic Toxicology, Oxidative Stress, Pesticide Poisoning, Zebrafish.
User
Subscription Login to verify subscription
Notifications
Font Size

  • Vaidya YP, Hulke SM. Study of trends of poisoning in the cases reported to government hospital, Yavatmal. Chron Young Sci. 2012; 63-67.
  • Sankararamakrishnan N, Sharma AK, Sanghi R. Organochlorine and organophosphorous pesticide residues in ground water and surface waters of Kanpur, Uttar Pradesh, India. Environ Int. 2005; 31:113–20. https://doi.org/10.1016/j.envint.2004.08.001PMid:15607785
  • Shukla G, Kumar A, Bhanti, Joseph PE, Taneja A. Organochlorine pesticide contamination of ground water in the city of Hyderabad. Environ Int. 2006; 244–7.https://doi.org/10.1016/j.envint.2005.08.027 PMid:16183122
  • Food and agriculture organization of the United Nations. International Code of Conduct on the Distribution and Use of Pesticides. 2002.
  • Vinay P, Shubha S, Rao S, Charmaine S, Ashwini K, Rohith V. A case of organophosphate poisoning presenting with seizure and unavailable history of parenteral suicide attempt. J Emerg Trauma Shock. 2011; 4:132–4.https://doi.org/10.4103/0974-2700.76825 PMid:21633583 PMCid:PMC3097564
  • Kumar A, Verma A, Kumar A. Accidental human poisoning with a neonicotinoid insecticide, imidacloprid: a rare report from rural India with a brief review of literature. Egypt J Forensic Sci. 2013; 3:123–6. https://doi.org/10.1016/j.ejfs.2013.05.002
  • Agency for Toxic Substances and Disease Registry (ATSDR). Toxicological profile for Atrazine U.S. Atlanta, GA: Department of Health and Human Services Public Health Services; 2003.
  • Battaglin WA, Rice CK, Foazio MJ, Salmons S, Barry RX.The occurrence of glyphosate, atrazine, and other pesticides in vernal pools and adjacent streams in Washington, DC, Maryland, Iowa and Wyoming 2005–2006. Environ Monit Assoc. 2008; 155:281–307.https://doi.org/10.1007/s10661008-0435-y PMid:18677547
  • Weber GJ, Sepulveda MS, Peterson SM, Lewis SS, Freeman JL. Transcriptome alterations following developmental atrazine exposure in zebrafish are associated with disruption of neuroendocrine and reproductive system function, cell cycle, and carcinogenesis. Toxicol Sci. 2013; 132(2):458–66. https://doi.org/10.1093/toxsci/kft017 PMid:23358194 PMCid:PMC3595526
  • Edmund D, Juventus BZ, Ken S. Acute atrazine food poisoning in Shaibupe: A farming community in Northern Ghana. World Journal of Medical and Surgical Case Reports World. J Med Surg Case Rep. 2013; 2:90–4.
  • Cooper RL, Stoker TE, Tyrey L, Goldman JM, McElroy WK. Atrazine disrupts the hypothalamic control of pituitaryovarian function. Toxicol Sci. 2000; 53:297–307.https://doi.org/10.1093/toxsci/53.2.297 PMid:10696778
  • McMullin TS, Andersen ME, Nagahara A, Lund TD, Pak T, Handa RJ, Hanneman WH. Evidence that atrazine and diaminochlorotriazine inhibit the estrogen/progesterone induced surge of luteinizing hormone in female Sprague-Dawley rats without changing estrogen receptor action. Toxicol Sci. 2004; 79:278–86.https://doi.org/10.1093/toxsci/kfh127 PMid:15056801
  • Eldridge JC, Wetzel LT, Tyrey L. Estrous cycle patterns of Sprague-Dawley rats during acute and chronic atrazine administration. Reprod Toxicol. 1999; 13:491-499. https://doi.org/10.1016/S0890-6238(99)00056-8
  • Santa MC, Monero J, Lopez-Campos JL. Hepatotoxicity induced by the herbicide atrazine in the rat. J Anal Toxicol. 1987; 7:373–8.
  • EPA. Twenty-four month combined chronic oral toxicity study of rats utilizing atrazine technical. Twelve month interim report for toxigenics study 410-1102. U.S. Environmental Protection Agency. EPA TRID. 1984. 4426010-19.
  • Beuret CJ, Zirulnik F, Gimenez MS. Effect of the herbicide glyphosate on liver lipid peroxidation in pregnant rats and their fetuses. Reprod. Toxicol. 2005; 19(4):501–4. https://doi.org/10.1016/j.reprotox.2004.09.009 PMid:15749264
  • WHO. Guidelines for drinking-water quality. Vol. 1. 2nd ed. World Health Organization; 1993.
  • Wang JJ, Cheng WX, Ding W, Zhi-Mo Z. The effect of the insecticide dichlorvos on esterase activity extracted from the psocids, Liposcelis bostrychophila and L. entomophila. J Insect Sci. 2004; 4(1):23. https://doi.org/10.1093/jis/4.1.23 PMid:15861238 PMCid:PMC528883
  • Kaur I, Jayashree K, Hiranandani M, Singhi SC. Severe organophosphate poisoning in a neonate. Indian Pediatr. 1996; 33(6):517–9. PMid:9019442
  • Chuiko GM. Comparative study of acetylcholinesterase and butyrylcholinesterase in brain and serum of several freshwater fish: Specific activities and in vitro inhibition by DDVP, an organophosphorus pesticide. Comp Biochem Physiol C Toxicol Pharmacol. 2000; 127:233–42. https://doi.org/10.1016/S0742-8413(00)00150-X
  • Eroğlu S, Pandir D, Uzun FG, Bas H. Protective role of vitamins C and E in diclorvos-induced oxidative stress in human erythrocytes in vitro. Biol Res. 2013; 46:33–8. https://doi.org/10.4067/S0716-97602013000100005 PMid:23760412
  • Das YT, Taskar PK, Brown HD, Chattopadhyay SK. Exposure of professional pest control operator to dichlorvos (DDVP) and residue on house structures. Toxicol Lett. 1983; 17:95– 9. https://doi.org/10.1016/0378-4274(83)90042-5
  • Celik I, Suzek H. Effects of sub acute exposure of dichlorvos at sublethal dosages on erythrocytes and tissue antioxidant defense systems and lipid peroxidation in rats. Ecotoxicol Environ Safe. 2009; 72:905–8. https://doi.org/10.1016/j.ecoenv.2008.04.007 PMid:18539328
  • Jemec A, Tisler T, Drobne D, Sepcic K, Fournier D, Trebse P. Comparative toxicity of imidacloprid, of its commercial liquid formulation and of diazinon to a nontarget arthropod, the microcrustacean Daphnia magna. Chemosphere. 2007; 68:1408–18. https://doi.org/10.1016/j.chemosphere.2007.04.015 PMid:17524455
  • Tomizawa M, Otsuka H, Miyamoto T. Pharmacological characteristics of insect nicotinic acetylcholine receptor with its ion channel and the comparison of the effect of nicotinoids and neonicotinoids. J Pestic Sci. 1995; 20:57–64.https://doi.org/10.1584/jpestics.20.57
  • Berny PJ, Florence BF, Videmann B, Thierry B. Evaluation of the toxicity of imidacloprid in wild birds. A new high performance thin layer chromatography method for the analysis of liver and crop samples in suspected poisoning cases. J Liq Chrom Rel Technol. 1999; 22:1547–59. https://doi.org/10.1081/JLC-100101750
  • Kapoor U, Srivastava MK, Bhardwaj S, Srivastava LP. Effect of imidacloprid on antioxidant enzymes and lipid peroxidation in female rats to derive it’s No Observed Effect Level (NOEL). J Toxicol Sci. 2010; 35(4):577–81. https://doi.org/10.2131/jts.35.577 PMid:20686345
  • Bal R, Naziroglu M, Turk G, Yilmaz O, Kuloglu T, Etem E, Baydas G. Insecticide imidacloprid induces morphological and DNA damage through oxidative toxicity on the reproductive organs of developing male rats. Cell Biochem Funct. 2012; 30(6):492–9. https://doi.org/10.1002/cbf.2826 PMid:22522919
  • Moza PN, Hustert K, Feicht E, Kettrup A. Photolysis of imidacloprid in aqueous solution. Chemosphere. 1998; 36(3):497–502. https://doi.org/10.1016/S00456535(97)00359-7
  • Kaur H, Sangha GK, Khere KD. Imidacloprid induced histological and biochemical alterations in liver of female albino rats. Pest Biochem physiol. 2013; 105(1):1–4. https://doi.org/10.1016/j.pestbp.2012.10.001 PMid:24238282
  • Bhardwaj S, Srivastava MK, Kapoor U, Srivastava LP. A 90 days oral toxicity of imidacloprid in female rats: Morphological, biochemical and histopathological evaluations. Food Chem Toxicol. 2010; 48:1185–90.https://doi.org/10.1016/j.fct.2010.02.009 PMid:20146932
  • Velisek J, Stara A. Effect of thiacloprid on early life stages of common carp (Cyprinus carpio)Chemosphere. 2018; 197:481–7. https://doi.org/10.1016/j.chemosphere.2017.11.176 PMid:29232641
  • Yan SH, Wang JH, Zhu LS, Chen AM, Wang J. Thiamethoxam induces oxidative stress and antioxidant response in zebrafish (Danio Rerio) livers. Environ Toxicol. 2016; 31:2006–15.https://doi.org/10.1002/tox.22201 PMid:26434662
  • Jhamtani RC, Dahiya MS, Agarwal R. Forensic toxicology research to investigate Environmental hazard. JFSCI. 2017; (2):1–4.
  • Deck AT, Reinke EN, Wilfred C, McCain. Wildlife Toxicity Assessment for Aldrin and Dieldrin. Elsevier; 2015. p. 367–84.
  • Jhamtani RC, Shukla S, Dahiya MS, Agarwal A. Impact of co-exposure of aldrin and titanium dioxide nanoparticles at biochemical and molecular levels in Zebrafish. Environ Toxicol Pharmacol. 2018; 58:141–55. https://doi.org/10.1016/j.etap.2017.12.021 PMid:29331773
  • Radosavljevic T, Mladenovic D, Jakovljevic V, Vucevic D, Rasic-Markovic A, Hrncic D, Djuric D, Stanojlovic O. Oxidative stress in liver and red blood cells in acute lindane toxicity in rats. Hum Exp Toxicol. 2009; 28(12):747–57.https://doi.org/10.1177/0960327109353055 PMid:19880658
  • Kanbur M, Liman BC, Eraslan G, Altinordulu S. Effects of cypermethrin, propetamphos, and combination involving cypermethrin and propetamphos on lipid peroxidation in mice. Environ Toxicol. 2008; 23:473–79.https://doi.org/10.1002/tox.20360 PMid:18214882
  • Howe K, Clark MD, Torroja CF, Torrance J, Berthelot C, Muffato M, Collins JE. The zebrafish reference genome sequence and its relationship to the human genome. Nature. 2013; 496:498–503. https://doi.org/10.1038/nature12111 PMid:23594743 PMCid:PMC3703927
  • Amatruda JF, Shepard JL, Stern HM, Zon Li. Zebrafish as a cancer model system. Cancer Cell. 2002; 1:229–31. https:// doi.org/10.1016/S1535-6108(02)00052-1
  • Spitsbergen JM, Kent ML. The state of the art of the zebrafish model for toxicology and toxicologic pathology researchadvantages and current limitations. Toxicol Pathol. 2003; 31:62–87. https://doi.org/10.1080/01926230390174959 PMid:12597434 PMCid:PMC1909756
  • Hill AJ, Teraoka H, Heidemann W, Peterson RE. Zebrafish as model vertebrate for investigating chemical toxicity.Toxicol Sci. 2005; 86:6–19. https://doi.org/10.1093/toxsci/ kfi110 PMid:15703261
  • Woudenberg BA, Wolterbeek A, Te Brake L, Snel C, Manke A, Rubingh C, De Gischolar_main D, Kroese D. A category approach to predicting the developmental (neuro) toxicity of organotin compounds: the value of the Zebrafish (Danio rerio) Embryotoxicity Test (ZET). Reprod Toxicol. 2013; 41:35–44.https://doi.org/10.1016/j.reprotox.2013.06.067 PMid:23796951
  • De Jong E, Barenys M, Hermsen SA, Verhoef A, Ossebdorp BC, Bessems JG, Piersma AH. Comparison of the mouse Embryonic Stem cell Test: The rat Whole Embryo Culture and the zebrafish embryotoxicity test as alternative methods for developmental toxicity testing of six 1,2,4-triazoles. Toxicol Appl Pharmacol. 2011; 253(2):103–11. https://doi.org/10.1016/j.taap.2011.03.014 PMid:21443896
  • Ali S, Van Mil HG, Richardson MK. Large-scale assessment of the zebrafish embryo as a possible predictive model in toxicity testing. PLoS ONE. 2011; 6(6):e21076. https:// doi.org/10.1371/journal.pone.0021076 PMid:21738604 PMCid:PMC3125172
  • Parng C, Seng WL, Semino C, McGrath P. Zebrafish: A preclinical model for drug screening. Assay Drug Dev Technol. 2002; 1(Pt 1):41–8.https://doi.org/10.1089/154065802761001293 PMid:15090155
  • Shukla S, Jhamtani RC, Dahiya MS, Agarwal A. Oxidative injury caused by individual and combined exposure of neonicotinoid, organophosphate and herbicide in zebrafish. Toxicol Rep. 2017; 4:240–4. https://doi.org/10.1016/j.toxrep.2017.05.002 PMid:28959645 PMCid:PMC5615116
  • Davies KJA. Oxidative stress, the paradox of aerobic life Free radical and Oxidative Stress: Environment, Drugs and Food Additives. London: Portland Press; 1995. p. 1–31. PMCid:PMC1050170
  • Livingstone DR. Contaminant-stimulated reactive oxygen species production and oxidative damage in aquatic organisms. Mar Pollut Bull. 2001; 42:656–66. https://doi.org/10.1016/S0025-326X(01)00060-1
  • Blahova J, Plhalova L, Hostovsky M, Divisova L, Dobsikova R, Mikulikova I. Oxidative stress responses in zebrafish (Danio rerio) after subchronic exposure to Atrazine. Food Chem Toxicol. 2013; 61:82–5. https://doi.org/10.1016/j.fct.2013.02.041 PMid:23499751
  • Zhu LS, Shao B, Song Y, Xie H, Wang JH, Liu W, Hou XX. DNA damage and effects on antioxidative enzymes in zebra fish (Danio rerio) induced by Atrazine. Toxicol Mech Meth. 2011; 21(1):31–6. https://doi.org/10.3109/15376516.2010.529186 PMid:21114466
  • Ge W, Yan S, Wang J, Zhu L, Chen A, Wang J. Oxidative stress and DNA damage induced by imidacloprid in zebrafish (Danio rerio). J Agric Food Chem. 2015; 63(6):1856–62. https://doi.org/10.1021/jf504895h PMid:25607931
  • Jhamtani RC, Shukla S, Dahiya MS, Agarwal A. Impact of co-exposure of aldrin and titanium dioxide nanoparticles at biochemical and molecular levels in Zebrafish. Environ Toxicol Pharmacol. 2018; 58:141–55. https://doi.org/10.1016/j.etap.2017.12.021 PMid:29331773
  • Shukla S, Jhamtani RC, Dahiya MS, Agarwal A. Biological alterations due to cocktail of pesticides in zebrafish. 25th Annual Conference of Society of Toxicology (STOX), India 2015 on Challenges and Opportunities in Toxicology Research, Education and Product Safety Assessments; Palamur Biosciences Private Limited; 2015 Nov 19–21.
  • Valavanidis A, Vlahogianni T, Dassenakis M, Scoullos, M. Molecular biomarkers of oxidative stress in aquatic organisms in relation to toxic environmental pollutants. Ecotoxicol Environ Saf. 2006; 64:178–89. https://doi.org/10.1016/j.ecoenv.2005.03.013 PMid:16406578
  • Winston GW, Di Giulio RT. Prooxidant and antioxidant mechanisms in aquatic organisms. Aquat Toxicol. 1991; 19:137–61. https://doi.org/10.1016/0166-445X(91)90033-6
  • Sukritha TH, Usharani MV. Effects of organophosphates on acute poisoning and acetylcholinestrase inhibition in zebrafish. Int J of Bioassays. 2013; 2(3):575–80.
  • Shukla S, Jhamtani RC, Dahiya MS, Agarwal A. Individual effects of dichlorvos and imidacloprid induced oxidative stress in zebrafish. Oral Presentation at 36th Annual Conference of Society of Toxicology (STOX), India 2016 during International Conference on New Insights and Multidisciplinary Approaches in Toxicological Studies. Amity Institute of Environmental Toxicology, Safety and Management (AIETSM).
  • Shukla S, Jhamtani RC, Dahiya MS, Agarwal A. Imidacloprid and Atrazine Induced Oxidative Stress in Zebrafish. 104th Indian Science Conference Association; 2017b.
  • Rodríguez-Fuentes G, Rubio-Escalante FJ, Nore-aBarroso E, Escalante-Herrera KS, Schlenk D. Impacts of oxidative stress on acetylcholinesterase transcription, and activity in embryos of zebrafish (Danio rerio) following Chlorpyrifos exposure. Comp Biochem Physiol C Toxicol Pharmacol. 2015; 172-173:19–25. https://doi.org/10.1016/j.cbpc.2015.04.003 PMid:25937383
  • Assis CR, Amaral IP, Castro PF, Carvalho LB, Bezerra RS. Effect of dichlorvos on the acetylcholinesterase from tambaqui (Colossoma macropomum) brain. Environ Toxicol Chem. 2007; 7:1451–3. https://doi.org/10.1897/06-488R1.1
  • Chan JY, Chan SH, Dai KY, Cholinergic-receptorindependent dysfunction of mitochondrial respiratory chain enzymes, reduced mitochondrial transmembrane potential and ATP depletion underlie necrotic cell death induced by the organophosphate poison mevinphos. Neuropharmacology. 2006; 51:1109–19.https://doi.org/10.1016/j.neuropharm.2006.06.024 PMid:16984802
  • Bloom SE, Lemley AT, Muscarella DE. Potentiation of apoptosis by heat stress plus pesticide exposure in stress resistant human B-lymphoma cells and its attenuation through interaction with follicular dendritic cells: role for c-Jun N-terminal kinase signaling. Toxicol Sci. 2006; 89(1):214–23. https://doi.org/10.1093/toxsci/kfj021 PMid:16237197
  • Kumar V, Gupta AK, Shukla RK, Tripathi VK, Jahan S, Pandey A, Srivastava A, Agrawal M, Yadav S, Khanna VK, Pant AB. Molecular mechanism of switching of TrkA/p75(NTR) signaling in monocrotophos induced neurotoxicity. Sci Rep. 2015; 15(5):14038.https://doi.org/10.1038/srep14038 PMid:26370177 PMCid:PMC4570211
  • Agarwal R, Raisuddin S, Tewari S, Goel SK, Raizada RB, Behari JR. Evaluation of comparative effect of pre-and post-treatment of selenium on mercury-induced oxidative stress, histological alterations, and metallothionein mRNA expression in rats. J Biochem Mol Toxicol. 2010a; 24:123– 35. PMid:20143455
  • Agarwal R, Goel SK, Chandra R, Behari JR. Role of vitamin E in preventing acute mercury toxicity in rat. Environ Toxicol Phar. 2010b; 29:70–8. https://doi.org/10.1016/j.etap.2009.10.003 PMid:21787585
  • Ceyhun SB, Ercument Aksakal, Birsen Kirim, Kubra Atabeyoglu, Orhan Erdogan. Chronic toxicity of pesticides to the mRNA expression levels of metallothioneins and cytochrome P450 1A genes in rainbow trout. Toxicol Ind Health. 2012; 28:162–9.https://doi.org/10.1177/0748233711409482 PMid:21665904
  • Erdogan O, Saltuk B, Ceyhun, Ekinci D, Aksakal E. Impact of deltamethrin exposure on mRNA expression levels of metallothionein A, B and cytochrome P450 1A in rainbow trout muscles. Gene. 2011; 484:13–7. https://doi.org/10.1016/j.gene.2011.05.026 PMid:21658436
  • Ozdemir S, Altun S, Arslan H. Imidacloprid exposure cause the histopathological changes, activation of TNF-α, iNOS, 8-OHdG biomarkers, and alteration of caspase 3, iNOS, CYP1A, MT1 gene expression levels in common carp (Cyprinus carpio L.). Toxicol Rep. 2018; 5:125–33. https://doi.org/10.1016/j.toxrep.2017.12.019 PMid:29321977 PMCid:PMC5751999

Abstract Views: 276

PDF Views: 0




  • Emergence of Zebrafish as a Biomarker for Pesticide Poisoning in Forensic Toxicology Research

Abstract Views: 276  |  PDF Views: 0

Authors

Saurabh Shukla
Laboratory of Analytical and Molecular Toxicology (Forensic Chemistry and Toxicology Laboratory), Institute of Forensic Science, Gujarat Forensic Sciences University, Sector 09, Gandhinagar – 382007, Gujarat, India
Reena C. Jhamtani
Laboratory of Analytical and Molecular Toxicology (Forensic Chemistry and Toxicology Laboratory), Institute of Forensic Science, Gujarat Forensic Sciences University, Sector 09, Gandhinagar – 382007, Gujarat, India
Rakhi Agarwal
Laboratory of Analytical and Molecular Toxicology (Forensic Chemistry and Toxicology Laboratory), Institute of Forensic Science, Gujarat Forensic Sciences University, Sector 09, Gandhinagar – 382007, Gujarat, India

Abstract


Forensic toxicology is the branch of forensic science which utilizes toxicology, pharmacology and analytical chemistry to help in legal investigations of suicidal, homicidal and accidental poisoning cases. Accidental poisoning cases related to occupational exposure of pesticides are also very common. Zebrafish is a versatile model organism that has been used as a model organism in different field of science, has various practical advantages over other vertebrate models. Present review summarizes the effects of pesticides and the use of adult zebrafish as a model organism in forensic toxicology research to understand the symptoms/effects and mechanism of pesticide poisoning.

Keywords


Forensic Science, Forensic Toxicology, Oxidative Stress, Pesticide Poisoning, Zebrafish.

References





DOI: https://doi.org/10.18311/ti%2F2018%2F22803