Open Access Open Access  Restricted Access Subscription Access
Open Access Open Access Open Access  Restricted Access Restricted Access Subscription Access

Adverse Impact of Textile Dyes on the Aquatic Environment as well as on Human Beings


Affiliations
1 Department of Zoology, Guru Nanak Dev University, Amritsar – 143005, Punjab, India
     

   Subscribe/Renew Journal


Dyeing stages involved in textile processing are considered to be one of the major contributors to aquatic pollution. Dyes being highly persistent due to the chemical composition are considered to be one of the most detrimental groups. Textile dyes essentially affect the exquisite aspect of aquatic bodies by enhancing biochemical as well as chemical oxygen demand. It also attenuates photosynthesis, hinders the growth of plants and invades the food chain. The bioaccumulating potential promotes toxicity, carcinogenicity and mutagenicity. Therefore, the present review article aims to focus on the predominant effects of textile dye on in the aquatic environment particularly on algae, fish and ultimately  on human being.

Keywords

Accumulation, Carcinogenesis, Textile Dyes, Toxicity
User
Subscription Login to verify subscription
Notifications
Font Size

  • Yang Q, Li Z, Lu X, Duan Q, Huang L, Bi J. A review of soil heavy metal pollution from industrial and agricultural regions in China: Pollution and risk assessment. Sci Total Environ. 2018; 642:690–700. PMid:29909337. https://doi.org/10.1016/j.scitotenv.2018.06.068
  • Gupta S, Satpati S, Nayek S, Garai D. Effect of wastewater irrigation on vegetables in relation to bioaccumulation of heavy metals and biochemical changes. Environ Monit Assess. 2010; 165(1-4):169–77. PMid: 19430920. https://doi.org/10.1007/s10661-009-0936-3
  • Hassan M, Hassan R, Anik Mahmud M, Israt Pia H, Arafat Hassan M, Uddin M. Sewage waste water characteristics and its management in urban areas - A case study at Pagla Sewage Treatment Plant. Dhaka Urban Reg Plan. 2017; 2(3):13–6. https://doi.org/10.11648/j.urp.20170203.11
  • Desore A, Narula SA. An overview on corporate response towards sustainability issues in textile industry. Environ Dev Sustain. 2018; 20(4):1439–59. https://doi.org/10.1007/s10668-017-9949-1
  • Bhatia SC. Pollution control in textile industry. Devraj S, ed. Woodhead Publishing India Pvt. Ltd. 2017. p. 340. https://doi.org/10.1201/9781315148588
  • Hossain MS, Das SC, Islam JMM, Al Mamun MA, Khan MA. Reuse of textile mill ETP sludge in environmental friendly bricks - effect of gamma radiation. Radiat Phys Chem. 2018; 151:77–83. https://doi.org/10.1016/j.radphyschem.2018.05.020
  • Muthu SS. Introduction. Muthu SS, ed. Sustainability in the Textile Industry. Singapore: Springer Singapore; 2017. p. 1–8. https://doi.org/10.1007/978-981-10-2639-3_1
  • Nigam P, Banat IM, Singh D, Marchant R. Microbial process for the decolorization of textile effluent containing azo, diazo and reactive dyes. Process Biochem. 1996; 31(5):435–42. https://doi.org/10.1016/0032-9592(95)00085-2
  • Robinson T, McMullan G, Marchant R, Nigam P. Remediation of dyes in textile effluent: A critical review on current treatment technologies with a proposed alternative. Bioresour Technol. 2001; 77(3):247–55. https://doi.org/10.1016/S0960-8524(00)00080-8
  • Guaratini CCI, Zanoni MVB. Textile Dyes Corantes texteis. Quim Nova. 2000; 23(1):71–8. https://doi.org/10.1590/S0100-40422000000100013
  • Chequer FMD, Angeli JPF, Ferraz ERA, Tsuboy MS, Marcarini JC, Mantovani MS, et al. The azo dyes Disperse Red 1 and Disperse Orange 1 increase themicronuclei frequencies in human lymphocytes and in HepG2 cells. Mutat Res - Genet Toxicol Environ Mutagen. 2009; 676(1):83–6. PMid: 19442572. https://doi.org/10.1016/j.mrgentox.2009.04.004
  • Gita S, Shukla SP, Saharan N, Prakash C, Deshmukhe G. Toxic effects of selected textile dyes on elemental composition, photosynthetic pigments, protein content and growth of a freshwater chlorophycean alga chlorella vulgaris. Bull Environ Contam Toxicol. 2019; 102(6):795–801. PMid: 30927019. https://doi.org/10.1007/s00128-019-02599-w
  • Bento RMF, Almeida MR, Bharmoria P, Freire MG, Tavares APM. Improvements in the enzymatic degradation of textile dyes using ionic-liquid-based surfactants. Sep Purif Technol. 2020; 235:116191. https://doi.org/10.1016/j.seppur.2019.116191
  • Mishra S, Maiti A. Applicability of enzymes produced from different biotic species for biodegradation of textile dyes. Clean Technol Environ Policy. 2019; 21(4):763–81. https://doi.org/10.1007/s10098-019-01681-5
  • Benkhaya S, M’rabet S, El Harfi A. A review on classifications, recent synthesis and applications of textile dyes. Vol. 115. Inorganic Chemistry Communications. Elsevier B.V.; 2020. p. 107891. https://doi.org/10.1016/j.inoche.2020.107891
  • Explaining low impact dyes - Cattermole Consulting Inc. [cited 2020 Dec 14]. https://www.cattermoleconsulting.com/explaining-low-impact-dyes/
  • Wang DM. Environmental protection in clothing industry. Sustainable Development. World Scientific; 2016. p. 729-35. https://doi.org/10.1142/9789814749916_0076
  • Orts F, del Río AI, Molina J, Bonastre J, Cases F. Electrochemical treatment of real textile wastewater: Trichromy Procion HEXL. J Electroanal Chem. 2018; 808:387–94. https://doi.org/10.1016/j.jelechem.2017.06.051
  • Berradi M, Hsissou R, Khudhair M, Assouag M, Cherkaoui O, El Bachiri A, et al. Textile finishing dyes and their impact on aquatic environs. Heliyon. 2019; 5(11):e02711. PMid: 31840123 PMCid: PMC6893069. https://doi.org/10.1016/j.heliyon.2019.e02711
  • Zaharia C, Suteu D, Muresan A, Muresan R, Popescu A. Textile wastewater treatment by homogenous oxidation with hydrogen peroxide. Environ Eng Manag J. 2009; 8(6):1359–69. https://doi.org/10.30638/eemj.2009.199
  • Setiadi T, Andriani Y, Erlania M. Treatment of textile wastewater by a combination of anaerobic and aerobic processes: A Denim Processing Plant Case. Ohgaki S, Fukushi K, Katayama H, Takizawa S, Polprasert C, eds. Southeast Asian Water Environment 1. IWA Publishing; 2005. p. 159–66.
  • Aquino JM, Rocha-Filho RC, Ruotolo LAM, Bocchi N, Biaggio SR. Electrochemical degradation of a real textile wastewater using β-PbO2 and DSA anodes. Chem Eng J. 2014; 251:138–45. https://doi.org/10.1016/j.cej.2014.04.032
  • Lopes de Sousa M, Bueno de Moraes P, Matos Lopes PR, Nallin Montagnolli R, De Angelis D de F, Dino Bidoia E. Contamination by Remazol red brilliant dye and its impact in aquatic photosynthetic microbiota. Environ Manag Sustain Dev. 2012; 1(2):129–38. https://doi.org/10.5296/emsd.v1i2.2512
  • Chia MA, Musa RI. Effect of indigo dye effluent on the growth, biomass production and phenotypic plasticity of Scenedesmus quadricauda (Chlorococcales). An Acad Bras Cienc. 2014; 86(1):419-28. PMid: 24676177. https://doi.org/10.1590/0001-3765201420130225
  • Khatri J, Nidheesh PV, Anantha Singh TS, Suresh Kumar M. Advanced oxidation processes based on zero-valent aluminium for treating textile wastewater. Chem Eng J. 2018; 348:67–73. https://doi.org/10.1016/j.cej.2018.04.074
  • Sandhya S. Biodegradation of Azo dyes under anaerobic condition: Role of Azoreductase. Atacag Erkurt H, ed. Biodegradation of Azo Dyes. Berlin, Heidelberg: Springer Berlin Heidelberg; 2010. p. 39–57. https://doi.org/10.1007/698_2009_43
  • Newman MC. Fundamentals of Ecotoxicology -The Science of Pollution. CRC Press; 2014. https://doi.org/10.1201/b17658
  • Rehman K, Shahzad T, Sahar A, Hussain S, Mahmood F, Siddique MH, et al. Effect of Reactive Black 5 azo dye on soil processes related to C and N cycling. Peer J. 2018; 2018(5):e4802. PMid: 29844965 PMCid: PMC5969049. https://doi.org/10.7717/peerj.4802
  • Imran M, Crowley DE, Khalid A, Hussain S, Mumtaz MW, Arshad M. Microbial biotechnology for decolorization of textile wastewaters. Rev Environ Sci Bio/Technology. 2015; 14(1):73–92. https://doi.org/10.1007/s11157-014-9344-4
  • Santana RM da R, Charamba LCV, do Nascimento GE, de Oliveira JGC, Sales DCS, Duarte MMMB, et al. Degradation of textile dyes employing advanced oxidative processes: Kinetic, Equilibrium Modeling and Toxicity Study of Seeds and Bacteria. Water Air Soil Pollut. 2019; 230(6):1–13. https://doi.org/10.1007/s11270-019-4178-x
  • O’Neill C, Hawkes FR, Hawkes DL, Lourenço ND, Pinheiro HM, Delée W. Color in textile effluents - Sources, measurement, discharge consents and simulation: A review. J Chem Technol Biotechnol. 1999; 74(11):1009–18. https://doi.org/10.1002/(SICI)1097-4660(199911)74:11<1009::AID-JCTB153>3.0.CO;2-N
  • Khan S, Malik A. Environmental and health effects of textile industry wastewater. Malik A, Grohmann E, Akhtar R, eds. Environmental Deterioration and Human Health: Natural and anthropogenic determinants. Dordrecht: Springer Netherlands; 2014. p. 55–71. https://doi.org/10.1007/978-94-007-7890-0_4
  • Tkacz RJ, Maguire RJ. Occurrence of Dyes in the Yamaska River, Quebec. Water Qual Res J. 1991; 26(2):145–62. http://iwaponline.com/wqrj/article-pdf /26/2/145/233407/wqrj0260145.pdf https://doi.org/1 0.2166/wqrj.1991.009
  • Oliveira DP. Dyes as important class of environmental contaminants - a case study. Corantes como importante classe de contaminates ambientais-um estudo de caso (in Portuguese) (São Paulo, Brazil: São Paulo University). 2005.
  • Al-Sabti K. Chlorotriazine reactive Azo Red 120 textile dye induces micronuclei in fish. Ecotoxicol Environ Saf. 2000; 47(2):149–55. PMid: 11023693. https://doi.org/10.1006/eesa.2000.1931
  • Karthikeyan S, Jambulingam M, Sivakumar P, Shekhar AP, Krithika J. Impact of textile effluents on fresh water fish Mastacembelus Armatus (Cuv. and Val) . J Chem. 2006; 3(4):303–6. https://doi.org/10.1155/2006/701612
  • Gita S, Hussan A, Choudhury TG. Impact of textile dyes waste on aquatic environments and its treatment. Environ Ecol. 2017; 35(22):2349–53.
  • Hernandez-Zamora M, Martinez-Jeronimo F. Exposure to the azo dye Direct blue 15 produces toxic effects on microalgae, cladocerans and zebrafish embryos. Ecotoxicology. 2019; 28(8):890–902. PMid: 31392637. https://doi.org/10.1007/s10646-019-02087-1
  • Dwivedi S. Effect of textile dyes on Spirulina platensis. J Chem Pharm Res. 2013; 5(4):66–80.
  • Croce R, Cina F, Lombardo A, Crispeyn G, Cappelli CI, Vian M, et al. Aquatic toxicity of several textile dye formulations: Acute and chronic assays with Daphnia magna and Raphidocelis subcapitata. Ecotoxicol Environ Saf. 2017; 144:79–87. PMid:28601520. http:// www.sciencedirect.com/science/article/pii/S014765131730324X https://doi.org/10.1016/j.ecoenv. 2017.05.046
  • Cai H, Li ang J, Ning X, Lai X, Li Y. Algal toxicity induced by effluents from textile-dyeing wastewater treatment plants. J Environ Sci. 2020; 91:199–208. PMid: 32172968. http://www.sciencedirect.com/scie nce/article/pii/S1001074220300048 https://doi.org/10 .1016/j.jes.2020.01.004
  • Athira N, Jaya DS. The use of fish biomarkers for assessing textile effluent contamination of aquatic ecosystems: A review. Nat Environ Pollut Technol. 2018; 17(1):25–34. www.neptjournal.com
  • Kaur H, Kalotra R, Walia GK, Handa D. Dyeing industry effluent induced behavioral and morphological changes in the fish, Cirrhinus mrigala. Int J Zool Res. 2013; 3(3):13–20.
  • Amwele HR, Papirom P, Chukanhom K, Beamish FHW, Petkam R. Acute and subchronic toxicity of metal complex Azo acid dye and anionic surfactant oil on fish Oreochromis niloticus. J Environ Biol. 2015; 36(1):199–205.
  • Barot J, Bahadur A. Toxic impacts of C.I. acid Orange 7 on behavioural, haematological and some biochemical parameters of Labeo rohita fingerlings. Int J Sci Res Environ Sci. 2015; 3(8):284–90. https://doi.org/10.12983/ijsres-2015-p0284-0290
  • Kaur K, Kaur S, Kaur A. A review on ecotoxic potential of pollutants in fish. J Appl Nat Sci. 2019; 11(1):48–53. https://doi.org/10.31018/jans.v11i1.1948
  • Parmar TK, Rawtani D, Agrawal YK. Bioindicators: the natural indicator of environmental pollution. Front Life Sci. 2016; 9(2):110–8. https://doi.org/10.1080/21553769.2016.1162753
  • Parmar A, Barot J. Determination of genotoxic effect of azo dye C. I. RR 120 on fish Catla catla. Biotechnol Res. 2016; 2(2):77–80.
  • Parmar A, Shah A. Cytogenotoxicity of azo dye Reactive Red 120 (RR120) on fish Catla catla. Environ Exp Biol. 2019; 17(3):151–5. https://doi.org/10.22364/eeb.17.15
  • Rishin A, Priyatha CV, Chitra KC. Induction of genetic damage in peripheral erythrocytes of the fish, Anabas testudineus exposed to sublethal concentration of Acid Orange 7. Res Rev A J Life Sci. 2019; 9(2):1–10.
  • Soni P, Sharma S, Sharma S, Kumar S, Sharma KP. A comparative study on the toxic effects of textile dye wastewaters (untreated and treated) on mortality and RBC of a freshwater fish Gambusia affinis (Baird and Gerard). J Environ Biol. 2006; 27(4):623–8 . 52. Sripriya L, Vijayalakshmi M, Sumathy R, Sharmila J. The impact of textile dyes on the biochemistryand histology of liver, a freshwater fish, tilapia, Oreochromis mossambicus (Peters.). Int J Pharma Bio Sci. 2014; 5(3).
  • Sekar P, Prasad SH, Raman MD. Effect of textile dye industry effluent on the nutritive value of fresh water female crab Spiralothelphusa hydrodroma (Herbst). J Appl Sci Res. 2009; 2041–8.
  • Gadagbui BKM, Goksoyr A. CYP1A and other biomarker responses to effluents from a textile mill in the Volta River (Ghana) using caged tilapia (Oreochromis niloticus) and sediment-exposed mudfish (Clarias anguillaris). Biomarkers. 1996; 1(4):252–61. PMid: 23888992, https://www.tandfonline.com/doi/abs/10.3 109/13547509609079365 https://doi.org/10.3109/135 47509609079365
  • Belpaire C, Reyns T, Geeraerts C, Van Loco J. Toxic textile dyes accumulate in wild European eel Anguilla anguilla. Chemosphere. 2015; 138:784–91. PMid: 26291760. https://doi.org/10.1016/j.chemosphere.201 5.08.007
  • Leme DM, De Oliveira GAR, Meireles G, Brito LB, Rodrigues L de B, Palma De Oliveira D. Eco - and genotoxicological assessments of two reactive textile dyes. J Toxicol Environ Heal - Part A Curr Issues. 2015; 78(5):287–300. PMid: 25734625. https://doi.org/10.1080/15287394.2014.971208
  • Ensink JHJ, van der Hoek W, Amerasinghe FP. Giardia duodenalis infection and wastewater irrigation in Pakistan. Trans R Soc Trop Med Hyg. 2006; 100(6):538–42. PMid: 16336984. https://doi.org/10.1016/j.trstmh.2005.08.014
  • Faryal R, Tahir F, Hameed A. Effect of wastewater irrigation o n soil along with its micro and macro flora. Pakistan J Bot. 2007; 39(1):193.
  • Garg VK, Kaushik P. Influence of textile mill wastewater irrigation on the growth of sorghum cultivars. Appl Ecol Environ Res. 2008; 6(1):1–12. https://doi.org/10.15666/aeer/0601_001012
  • Zhou Q. Chemical pollution and transport of organic dyes in water-soil-crop systems of the Chinese Coast. Bull Environ Contam Toxicol. 2001; 66(6):0784–93. PMid: 11353382. http://link.springer.de/link/service/journals/00128/bibs/1066006/10660784.htm https://doi.org/10.1007/s00128-001-0077-z
  • Imran M, Shaharoona B, Crowley DE, Khalid A, Hussain S, Arshad M. The stability of textile azo dyes in soil and their impact on microbial phospholipid fatty acid profiles. Ecotoxicol Environ Saf. 2015; 120:163–8. PMid: 26074308. https://doi.org/10.1016/j.ecoenv.2015.06.004
  • Khan S, Malik A. Toxicity evaluation of textile effluents and role of native soil bacterium in biodegradation of a textile dye. Environ Sci Pollut Res. 2018; 25(5):4446–58. PMid: 29185221. https://doi.org/10.1007/s11356-017-0783-7
  • Vikrant K, Giri BS, Raza N, Roy K, Kim KH, Rai BN, et al. Recent advancements in bioremediation of dye: Current status and challenges. Bioresour Technol. 2018; 253:355–67. PMid: 29352640. https://doi.org/10.1016/j.biortech.2018.01.029
  • Ito T, Adachi Y, Yamanashi Y, Shimada Y. Long-term natural remediation process in textile dye-polluted river sediment driven by bacterial community changes. Water Res. 2016; 100:458–65. PMid: 27232990. https://doi.org/10.1016/j.watres.2016.05.050
  • Rawat D, Mishra V, Sharma RS. Detoxification of azo dyes in the context of environmental processes. Chemosphere. 2016; 155:591–605. PMid: 27155475. https://doi.org/10.1016/j.chemosphere.2016.04.068
  • Brock T, Groteklaes M, Mischke P. European coatings handbook. Vincentz Network GmbH and Co KG; 2000.
  • Vargas AMM, Paulino AT, Nozaki J. Effects of daily nickel intake on the bio-accumulation, body weight and length in tilapia (Oreochromis niloticus). Toxicol Environ Chem. 2009; 91(4):751-9. https://doi.org/ 10.1080/02772240802541353
  • Christie R. Colour chemistry. Royal Society of Chemistry; 2001.
  • Vankar PS. Handbook on natural dyes for industrial applications : Extraction of Dyestuff from Flowers, Leaves, Vegetables. Niir Project Consultancy Services; 2016.
  • Christie RM. Environmental aspects of textile dyeing. Elsevier; 2007. https://doi.org/10.1201/9781439823941
  • Clark M. Handbook of textile and industrial dyeing: principles, processes and types of dyes. Elsevier; 2011. https://doi.org/10.1533/9780857093974
  • Lellis B, Favaro-Polonio CZ, Pamphile JA, Polonio JC. Effects of textile dyes on health and the environment and bioremediation potential of living organisms. Biotechnol Res Innov. 2019; 3(2):275–90. https://doi.org/10.1016/j.biori.2019.09.001
  • Copaciu F, Opris O, Coman V, Ristoiu D, Niinemets U, Copolovici L. Diffuse water pollution by anthraquinone and azo dyes in environment importantly alters foliage volatiles, carotenoids and physiology in wheat (Triticum aestivum). Water Air Soil Pollut. 2013;224(3):1–11. https://doi.org/10.1007/s11270-013-147 8-4
  • Hanger K. Industrial dyes: Chemistry, properties and applications, health and safety aspects. Germany: Wiley-VCH; 2003.
  • Haq I, Raj A, Markandeya. Biodegradation of Azure-B dye by Serratia liquefaciens and its validation by phytotoxicity, genotoxicity and cytotoxicity studies. Chemosphere. 2018; 196:58–68. PMid: 29291515. http://www.sciencedirect.com/science/article/pii/S0045653517321318 https://doi.org/10.1016/j.chemos phere.2017.12.153
  • Khan AY, Suresh Kumar G. Spectroscopic studies on the binding interaction of phenothiazinium dyes, azure A and azure B to double stranded RNA polynucleotides. Spectrochim Acta - Part A Mol Biomol Spectrosc. 2016; 152:417–25. PMid: 26241827. https://doi.org/10.1016/j.saa.2015.07.091
  • Petzer A, Harvey BH, Wegener G, Petzer JP. Azure B, a metabolite of methylene blue, is a high-potency, reversible inhibitor of monoamine oxidase. Toxicol Appl Pharmacol. 2012; 258(3):403–9. PMid: 22197611. https://doi.org/10.1016/j.taap.2011.12.005
  • Paul P, Suresh Kumar G. Thermodynamics of the DNA binding of phenothiazinium dyes toluidine blue O, azure A and azure B. J Chem Thermodyn. 2013; 64:50–7. https://doi.org/10.1016/j.jct.2013.04.023
  • Mittal A, Thakur V, Gajbe V. Adsorptive removal of toxic azo dye Amido Black 10B by hen feather. Environ Sci Pollut Res. 2013; 20(1):260-9. PMid: 22407416. http://www.chemialland21.com/specialtychem/ https://doi.org/10.1007/s11356-012-0843-y
  • Chequer FMD, Lizier TM, de Felício R, Zanoni MVB, Debonsi HM, Lopes NP, et al. Analyses of the genotoxic and mutagenic potential of the products formed after the biotransformation of the azo dye Disperse Red 1. Toxicol Vitr. 2011; 25(8):2054–63. PMid: 21907275. https://doi.org/10.1016/j.tiv.2011.05.033
  • Fernandes FH, Bustos-Obregon E, Salvadori DMF. Disperse Red 1 (textile dye) induces cytotoxic and genotoxic effects in mouse germ cells. Reprod Toxicol. 2015; 53:75–81. PMid: 25883024. https://doi.org/10.1016/j.reprotox.2015.04.002
  • Will Y, McDuffie JE, Olaharski AJ, Jeffy BD. Drug discovery toxicology: From target assessment to translational biomarkers. John Wiley and Sons; 2016. https://doi.org/10.1002/9781119053248
  • Manzar MS, Waheed A, Qazi IW, Blaisi NI, Ullah N. Synthesis of a novel epibromohydrin modified crosslinked polyamine resin for highly efficient removal of methyl orange and eriochrome black T. J Taiwan Inst Chem Eng. 2019; 97:424–32. http://www.sciencedirect.com/science/article/pii/S1876107019300446 https://d oi.org/10.1016/j.jtice.2019.01.027
  • Barka N, Abdennouri M, Makhfouk MEL. Removal of methylene blue and eriochrome black T from aqueous solutions by biosorption on Scolymus hispanicus L.: Kinetics, equilibrium and thermodynamics. J Taiwan Inst Chem Eng. 2011; 42(2):320–6. http://www.sciencedirect.com/science/article/pii/S1876107010001264 https://doi.org/10.1016/j.jtice.2010.07.004
  • Park JH, Wang JJ, Tafti N, Delaune RD. Removal of eriochrome black T by sulfate radical generated from Fe-impregnated biochar/persulfate in Fenton-like reaction. J Ind Eng Chem. 2019; 71:201–9. http://www.sciencedirect.com/science/article/pii/S1226086X18305148 https://doi.org/10.1016/j.jiec.2018.11.026
  • Vaiano V, Sacco O, Libralato G, Lofrano G, Siciliano A, Carraturo F, et al. Degradation of anionic azo dyes in aqueous solution using a continuous flow photocatalytic packed-bed reactor: Influence of water matrix and toxicity evaluation. J Environ Chem Eng. 2020; 8(6):104549. http://www.sciencedirect.com/science/article/pii/S2213343720308988 https://doi.org/10.1016/j.jece.2020.104549
  • National Toxicology Program. Carcinogenesis bioassay of C.I. Solvent Yellow 14 (CAS No. 842-07-9) in F344/N Rats and B6C3F1 Mice (Feed Study). Natl Toxicol Program Tech Rep Ser. 1982; 226:1–164. http://www.ncbi.nlm.nih.gov/pubmed/12778210
  • Petrakis EA, Cagliani LR, Tarantilis PA, Polissiou MG, Consonni R. Sudan dyes in adulterated saffron (Crocus sativus L.): Identification and quantification by 1H NMR. Food Chem. 2017; 217:418–24. PMid: 27664653. https://doi.org/10.1016/j.foodchem.2016.08.078
  • Duman O, Tunc S, Gürkan Polat T. Adsorptive removal of triarylmethane dye (Basic Red 9) from aqueous solution by sepiolite as effective and low-cost adsorbent. Microporous Mesoporous Mater. 2015; 210:176–84. https://doi.org/10.1016/j.micromeso.2015.02.040
  • Foguel MV, Ton XA, Zanoni MVB, Sotomayor MDPT, Haupt K, Tse Sum Bui B. A molecularly imprinted polymer-based evanescent wave fiber optic sensor for the detection of basic red 9 dye. Sensors Actuators, B Chem. 2015; 218:222–8. https://doi.org/10.1016/j.snb.2015.05.007
  • Pohanish RP. Sittig’s Handbook of Toxic and Hazardous Chemicals and Carcinogens. Elsevier Science; 2011.
  • Ali HM, Shehata SF, Ramadan KMA. Microbial decolorization and degradation of crystal violet dye by Aspergillus niger. Int J Environ Sci Technol. 2016; 13(12):2917–26. https://doi.org/10.1007/s13762-016-1117-x
  • Bharagava RN, Mani S, Mulla SI, Saratale GD. Degradation and decolourization potential of an ligninolytic enzyme producing Aeromonas hydrophila for crystal violet dye and its phytotoxicity evaluation. Ecotoxicol Environ Saf. 2018; 156:166–75. PMid: 29550434. https://doi.org/10.1016/j.ecoenv.2018.03.012
  • Rao KVK. Inhibition of DNA synthesis in primary rat hepatocyte cultures by malachite green: a new liver tumor promoter. Toxicol Lett. 1995; 81(2-3):107–13. https://doi.org/10.1016/0378-4274(95)03413-7
  • Gouranchat C. Malachite green in fish culture (state of the art and perspectives). Bibliographic study. Ec natl Vet ENVT, Nantes (France) 142. 2000; 142:2000.
  • Cha CJ, Doerge DR, Cerniglia CE. Biotransformation of malachite green by the fungus Cunninghamella elegans. Appl Environ Microbiol. 2001; 67(9):4358–60. PMid: 11526047 PMCid: PMC93171. http://aem.asm.org/ https://doi.org/10.1128/AEM.67.9.4358-4360.2001
  • Oplatowska M, Donnelly RF, Majithiya RJ, Glenn Kennedy D, Elliott CT. The potential for human exposure, direct and indirect, to the suspected carcinogenic triphenylmethane dye Brilliant Green from green paper towels. Food Chem Toxicol. 2011; 49(8):1870–6. PMid: 21596089. http://www.sciencedirect.com/science/article/pii/S0278691511001931 https://doi.org/10.1016/j.fct.2011.05.005
  • Sreedharan V, Bhaskara Rao KV. Biodegradation of textile azo dyes. Gothandam KM, Ranjan S, Dasgupta N, Lichtfouse E, eds. Nanoscience and Biotechnology for Environmental Applications. Cham: Springer International Publishing; 2019. p. 115–39. https://doi.org/10.1007/978-3-319-97922-9_5
  • Eren HA, Yigit İ, Eren S, Avinc O. Sustainable textile processing with zero water utilization using super critical carbon dioxide technology. Springer, Cham; 2020. p. 179–96. https://doi.org/10.1007/978-3-030-38545-3_8
  • Blanquez A, Rodriguez J, Brissos V, Mendes S, Martins LO, Ball AS, et al. Decolorization and detoxification of textile dyes using a versatile Streptomyces laccase-natural mediator system. Saudi J Biol Sci. 2019; 26(5):913–20. PMid: 31303819 PMCid: PMC6600735. https://doi.org/10.1016/j.sjbs.2018.05.020
  • Bayburt C, Karaduman AB, Yenice Gursu B, Tuncel M, Yamac M. Decolourization and detoxification of textile dyes by Lentinus arcularius in immersion bioreactor scale. Int J Environ Sci Technol. 2020; 17(2):945–58. https://doi.org/10.1007/s13762-019-02519-9

Abstract Views: 134

PDF Views: 0




  • Adverse Impact of Textile Dyes on the Aquatic Environment as well as on Human Beings

Abstract Views: 134  |  PDF Views: 0

Authors

Pooja Chadha
Department of Zoology, Guru Nanak Dev University, Amritsar – 143005, Punjab, India
Sukanya Mehra
Department of Zoology, Guru Nanak Dev University, Amritsar – 143005, Punjab, India
Mandeep Singh
Department of Zoology, Guru Nanak Dev University, Amritsar – 143005, Punjab, India

Abstract


Dyeing stages involved in textile processing are considered to be one of the major contributors to aquatic pollution. Dyes being highly persistent due to the chemical composition are considered to be one of the most detrimental groups. Textile dyes essentially affect the exquisite aspect of aquatic bodies by enhancing biochemical as well as chemical oxygen demand. It also attenuates photosynthesis, hinders the growth of plants and invades the food chain. The bioaccumulating potential promotes toxicity, carcinogenicity and mutagenicity. Therefore, the present review article aims to focus on the predominant effects of textile dye on in the aquatic environment particularly on algae, fish and ultimately  on human being.

Keywords


Accumulation, Carcinogenesis, Textile Dyes, Toxicity

References





DOI: https://doi.org/10.18311/ti%2F2021%2Fv28i2%2F26798