Open Access Open Access  Restricted Access Subscription Access
Open Access Open Access Open Access  Restricted Access Restricted Access Subscription Access

Caecal Ligation and Puncture Develops Time Dependent Progression of Sepsis With Multiple Organs Damage and Vascular Dysfunctions in Mice


Affiliations
1 Smooth Muscle Pharmacology and Molecular Pharmacology Laboratory, Department of Veterinary Pharmacology and Toxicology, Mathura - 281001, Uttar Pradesh, India
2 Department of Veterinary Pathology, College of Veterinary Science and Animal Husbandry U. P. Pandit Deen Dayal Upadhyaya Pashu Chikitsa Vigyan Vishwavidyalaya Evam Go-Anusandhan Sansthan, Mathura – 281001, Uttar Pradesh, India
     

   Subscribe/Renew Journal


Sepsis is a dysregulated systemic inflammatory response syndrome that affects multiple organs. However, its effect on vital organs during different phases of sepsis is lacking. Present study was carried out to establish the time dependent changes in the vital organs during different phases of sepsis. Sepsis was induced by caecal ligation and puncture in mice. Sepsis significantly reduced RBC, Hb and WBC counts during both the phases whereas neutrophil count was increased during early phase. There was also a marked fall in lymphocyte count during late phase of sepsis which is an indicative of immunosuppressive state. Significant rise in the plasma ALT, AST, BUN and creatinine levels during early and late phases of sepsis were suggestive of liver and kidney dysfunctions which were further substantiated by histopathological examinations of these vital organs. Sepsis also produced a state of hypoproteinaemia with significant reduction in plasma albumin level. Significant progressive attenuation of vascular reactivity to nor-adrenaline and endothelial relaxation to acetylcholine were also observed in early to late phases of sepsis. However, sodium-nitroprusside-induced endothelium-independent relaxation was unaltered in both early ‘as well as late phase of sepsis. Histopathological examination of lungs, heart and intestine showed progressive degenerative changes which were more prominent with progression from early to late phase of sepsis. Based on the findings of the present study, it may be inferred that caecal ligation and puncture produces time-dependent progression of sepsis in mice affecting multiple organs.

Keywords

CLP, Early and Late Phase, Histopathology, Sepsis, Vital Organs
User
Subscription Login to verify subscription
Notifications
Font Size

  • Bosmann M, Ward A. The inflammatory response in sepsis. Trends Immunol. 2013; 34:129–36. https:// doi.org/10.1016/j.it.2012.09.004. PMid:23036432 PMCid:PMC3543471
  • Dellinger RP, Levy MM, Rhodes A, Annane D, Gerlach H, Opal SM, et al. Surviving sepsis campaign: International guidelines for management of severe sepsis and septic shock, 2012. Crit Care Med. 2013; 41:580–37. https://doi.org/10.1097/ CCM.0b013e31827e83af. PMid:23353941
  • Kochanek KD, Smith B. Deaths: preliminary data for 2002. Natl Vital Stat Rep. 2004; 52(13):1–47.
  • Parrillo JE, Parker MM, Natanson C, Suffredini AF, Danner RL, Cunnion RE, et al. Septic shock in humans. Advances in the understanding of pathogenesis, cardiovascular dysfunction, and therapy. Ann Intern Med. 2006; 113:227–42. https://doi.org/10.7326/0003- 4819-113-3-227. PMid:2197912
  • Poelaert J, Declerck C, Vogelaers D, Colardyn F, Visser CA. Left ventricular systolic and diastolic function in septic shock. Intensive Care Med. 1997; 23:553–60. https://doi.org/10.1007/s001340050372. PMid:9201528
  • Wicherman KA, Baue AE, Chaudry IH. Sepsis and septic shock: A review of laboratory models and a proposal. J Surg Res. 1980; 29:189–201. https://doi. org/10.1016/0022-4804(80)90037-2
  • Gibson-Corley KN, Olivier AK, Meyerholz DK. Principles for valid histopathologic scoring in research. Vet Pathol. 2013; 50(6):1007–15. https:// doi.org/10.1177/0300985813485099 PMid:23558974 PMCid:PMC3795863
  • Wang P, Ba ZF, Chaudry IH. Endotheliumdependent relaxation is depressed at the macro and microcirculatory levels during sepsis. Am J Physiol. 1995; 269:R998–94. https://doi.org/10.1152/ ajpregu.1995.269.5.R988. PMid:7503327
  • Hubbard WJ, Choudhry M, Schwacha MG, Kerby JD, Rue LW, Bland KI, et al. Cecal ligation and puncture. Shock. 2005; 24:52–7. https://doi.org/10.1097/01. shk.0000191414.94461.7e. PMid:16374373
  • Choudhury S, Kandasamy K, Maruti BS, Addison MP, Kasa JK, Darzi SA, et al. Atorvastatin along with imipenem attenuates acute lung injury in sepsis through decrease in inflammatory mediators and bacterial load. Eu J Pharmacol. 2015; 765:447–56. https://doi. org/10.1016/j.ejphar.2015.09.009. PMid:26375251
  • Tyagi A, Sethi AK, Girotra G, Mohta M. The microcirculation in sepsis. Ind J Anaesth. 2009; 53:281–93.
  • Adamzik M, Hamburger T, Petrat F, Peters J, Groot H, Hartmann. Free hemoglobin concentration in severe sepsis: methods of measurement and prediction of outcome. Crit Care. 2012; 16:R125. https://doi. org/10.1186/cc11425. PMid:22800762 PMCid:PMC35 80706
  • Jansma G, Buter H, Gerritsen RT, Boerma EC. Is hemoglobin concentration affected by sepsis in the acute phase? Crit. Care. 2013; 17(2):P10. https://doi. org/10.1186/cc11948. PMCid:PMC3642527
  • Kimmoun A, Ducrocq N, Levy B. Mechanisms of vascular hyporesponsiveness in septic shock. CurrVasc Pharmacol. 2013; 11:139–49. https://doi.org/10. 2174/1570161111311020004. PMid:23506493
  • Subramani J, Kathirvel K, Leo MD, Kuntamallappanavar G, Singh TU, Mishra SK. Atorvastatin restores the impaired vascular endothelium dependent relaxations mediated by nitric oxide and endothelium-derived hyperpolarizing factors but not hypotension in sepsis. J Cardiovasc Pharmacol. 2009; 54:526–34. https://doi. org/10.1097/FJC.0b013e3181bfafd6. PMid:19755915
  • Gustot T. Multiple organ failure in sepsis: prognosis and role of systemic inflammatory response. Curr Opin Crit Care. 2011; 17:153–9. https://doi.org/10.1097/ MCC.0b013e328344b446. PMid:21346564
  • Deng M, Scott MJ, Loughran P, Gibson G, Sodhi C, Watkins S, et al. Lipopolysaccharide clearance, bacterial clearance, and systemic inflammatory responses are regulated by cell type-specific functions of TLR4 during sepsis. J Immunol. 2013;190:5152–60. https:// doi.org/10.4049/jimmunol.1300496. PMid:23562812 PMCid:PMC3644895
  • Muftuoglu MA, Aktekin A, Ozdemir NC, Saglam A. Liver injury in sepsis and abdominal compartment syndrome in rats. Surg Today. 2006; 36:519–24. https:// doi.org/10.1007/s00595-006-3196-7. PMid:16715421
  • Wang D, Yin Y, Yao Y. Advances in sepsis-associated liver dysfunction. Burns Trauma. 2014; 2:97–105. https://doi.org/10.4103/2321-3868.132689. PMid:2760 2369. PMCid:PMC5012093
  • Doi K. Role of kidney injury in sepsis. J Intensive Care. 2016; 4:17. https://doi.org/10.1186/s40560-016-0146- 3. PMid:27011788. PMCid:PMC4804517
  • Doi K, Yuen PST, Eisner C, Hu X, Leelahavanichkul A, Schnermann J, et al. Star reduced production of creatinine limits its use as marker of kidney injury in Sepsis. J Am Soc Nephrol. 2009; 20:1217–21. https:// doi.org/10.1681/ASN.2008060617. PMid:19389851. PMCid:PMC2689892
  • Sun J-K, Sun F, Wang X, Yuan S-T, Zheng S-Y, Mu X-W. Risk factors and prognosis of hypoalbuminemia in surgical septic patients. Peer J. 2015; 3:e1267. https://doi.org/10.7717/peerj.1267. PMid:26557421. PMCid:PMC4636415
  • Gatta A, Verardo A, Bolognesi M. Hypoalbuminemia. Internal. Emergency Med. 2012; 7: S193–99. https:// doi.org/10.1007/s11739-012-0802-0. PMid:23073857
  • Finfer S, McEvoy S, Bellomo R, McArthur C, Myburgh J, Norton R. Impact of albumin compared to saline on organ function and mortality of patients with severe sepsis. Intensive Care Med. 2011; 37: 86–96. https:// doi.org/10.1007/s00134-010-2039-6. PMid:20924555
  • Luo L, Zhang S, Wang Y, Rahman M, Syk I, Zhang E, et al. Proinflammatory role of neutrophil extracellular traps in abdominal sepsis. Am J Physiol Lung Cell Mol Physiol. 2014; 307: L586–96. https://doi.org/10.1152/ ajplung.00365.2013. PMid:25085626
  • Lucas R, Verin AD, Black SM, Catravas JD. Regulators of endothelial and epithelial barrier integrity and function in acute lung injury. Biochem Pharmacol. 2009; 77:e1763–72. https:// doi.org/10.1016/j.bcp.2009.01.014. PMid:19428331 PMCid:PMC4474367
  • Obinu E, Fanos V, Gerosa C, Fanni D, Loddo C, Ambu R, Faa G. Histological changes in neonatal sepsis. J Pediatr Neonatal Individualized Med. 2014; 3:1–11.
  • Fay KT, Ford ML, Coopersmith CM. The intestinal microenvironment in sepsis. Biochim Biophys Acta. 2017; S0925–4439:30081–9. https://doi. org/10.1016/j.bbadis.2017.03.005. PMid:28286161 PMCid:PMC5589488
  • Lyons JD, Coopersmith CM. Pathophysiology of the gut and the microbiome in the Host Response. Pediatr Crit Care Med. 2017; 8:S46–9. https://doi.org/10.1097/ PCC.0000000000001046. PMid:28248833. PMCid:PM C5333129

Abstract Views: 98

PDF Views: 0




  • Caecal Ligation and Puncture Develops Time Dependent Progression of Sepsis With Multiple Organs Damage and Vascular Dysfunctions in Mice

Abstract Views: 98  |  PDF Views: 0

Authors

Preeti Singh
Smooth Muscle Pharmacology and Molecular Pharmacology Laboratory, Department of Veterinary Pharmacology and Toxicology, Mathura - 281001, Uttar Pradesh, India
Udayraj P. Nakade
Smooth Muscle Pharmacology and Molecular Pharmacology Laboratory, Department of Veterinary Pharmacology and Toxicology, Mathura - 281001, Uttar Pradesh, India
Abhishek Sharma
Smooth Muscle Pharmacology and Molecular Pharmacology Laboratory, Department of Veterinary Pharmacology and Toxicology, Mathura - 281001, Uttar Pradesh, India
Neeraj Gangwar
Department of Veterinary Pathology, College of Veterinary Science and Animal Husbandry U. P. Pandit Deen Dayal Upadhyaya Pashu Chikitsa Vigyan Vishwavidyalaya Evam Go-Anusandhan Sansthan, Mathura – 281001, Uttar Pradesh, India
Soumen Choudhury
Smooth Muscle Pharmacology and Molecular Pharmacology Laboratory, Department of Veterinary Pharmacology and Toxicology, Mathura - 281001, Uttar Pradesh, India
Amit Shukla
Smooth Muscle Pharmacology and Molecular Pharmacology Laboratory, Department of Veterinary Pharmacology and Toxicology, Mathura - 281001, Uttar Pradesh, India
Satish Kumar Garg
Smooth Muscle Pharmacology and Molecular Pharmacology Laboratory, Department of Veterinary Pharmacology and Toxicology, Mathura - 281001, Uttar Pradesh, India

Abstract


Sepsis is a dysregulated systemic inflammatory response syndrome that affects multiple organs. However, its effect on vital organs during different phases of sepsis is lacking. Present study was carried out to establish the time dependent changes in the vital organs during different phases of sepsis. Sepsis was induced by caecal ligation and puncture in mice. Sepsis significantly reduced RBC, Hb and WBC counts during both the phases whereas neutrophil count was increased during early phase. There was also a marked fall in lymphocyte count during late phase of sepsis which is an indicative of immunosuppressive state. Significant rise in the plasma ALT, AST, BUN and creatinine levels during early and late phases of sepsis were suggestive of liver and kidney dysfunctions which were further substantiated by histopathological examinations of these vital organs. Sepsis also produced a state of hypoproteinaemia with significant reduction in plasma albumin level. Significant progressive attenuation of vascular reactivity to nor-adrenaline and endothelial relaxation to acetylcholine were also observed in early to late phases of sepsis. However, sodium-nitroprusside-induced endothelium-independent relaxation was unaltered in both early ‘as well as late phase of sepsis. Histopathological examination of lungs, heart and intestine showed progressive degenerative changes which were more prominent with progression from early to late phase of sepsis. Based on the findings of the present study, it may be inferred that caecal ligation and puncture produces time-dependent progression of sepsis in mice affecting multiple organs.

Keywords


CLP, Early and Late Phase, Histopathology, Sepsis, Vital Organs

References