Open Access Open Access  Restricted Access Subscription Access
Open Access Open Access Open Access  Restricted Access Restricted Access Subscription Access

Therapeutic Protection of Arsenic-Induced Oxidative Stress and Hepato-Nephro Toxicity by Syzygium cumini (Seed) Ethanolic Extract (SCEE) in Charles Foster Rats


Affiliations
1 University Department of Zoology, Jai Prakash University, Chapra - 841301, Bihar, India
2 Mahavir Cancer Sansthan and Research Centre, Patna - 801505, Bihar, India
     

   Subscribe/Renew Journal


Arsenic (As) is an environmental toxin distributed in groundwater which is presently a global concern. The present study aimed to investigate the efficacy of SCEE in the mitigation of arsenic-induced hepato-renal dysfunction and oxidative stress in rats. Thirty male Charles foster rats (140-160 g) were randomly assigned into three groups. Group I (n = 6) - Control, Group II (n = 6) - SCEE control was administrated with 600 mg kg-1 body weight daily for 60 days and the last Group III (n = 24) was As-treated at 8 mg kg-1 body weight daily for 90 days. Subsequently, Group III was further divided into three subgroups. The subgroup I (n = 6) was immediately sacrificed to observe the arsenic-induced toxicity. Subgroup II (n = 6) was kept on a normal diet for 60 days for auto recovery. Subgroup III (n = 6) was administrated orally by SCEE at 600 mg kg-1 body weight daily for 60 days to decipher the therapeutic potential against arsenic-induced toxicity. The experimental exposure reveals various changes in biochemical parameters of the liver function test and kidney function test in addition to histopathological studies. Chronic exposure to arsenic significantly (p < 0.0001) increased the levels of lipid peroxidation along with significantly reducing the activity of glutathione, superoxide dismutase and catalase. Significant (p < 0.0001) arsenic accumulation was observed in the hepatic-nephron tissues. The dose-dependent SCEE administration against Astoxicity had progressive survival benefits on antioxidant levels, enzymatic activities and histopathological changes. Thus, the study concludes that S.cumini seed has a protective effect against As-induced oxidative stress and hepato-renal intoxication.

Keywords

Hepato-Nephro Protective Activity, Oxidative Stress, S. cumini, Sodium Arsenite.
User
Subscription Login to verify subscription
Notifications
Font Size

  • Kumar A, Ali M, Kumar R, Kumar M, Sagar P, Pandey RK, Akhouri V, Kumar V, Anand G, Niraj PK, Rani R, Kumar S, Kumar D, Bishwapriya A, Ghosh AK. Arsenic exposure in Indo Gangetic plains of Bihar causing increased cancer risk. Sci Rep. 2021; 11(1):2376. https://doi.org/10.1038/s41598- 021-81579-9 PMid:33504854 PMCid:PMC7841152
  • Zhou Q, Xi S. A review on arsenic carcinogenesis: Epidemiology, metabolism, genotoxicity and epigenetic changes. Regul Toxicol Pharmacol. 2018; 99:78-88. https:// doi.org/10.1016/j.yrtph.2018.09.010 PMid:30223072
  • Ahmad SA, Khan MH, Haque M. Arsenic contamination in groundwater in Bangladesh: implications and challenges for healthcare policy. Risk Manag Healthc Policy. 2018; 11:251-261. https://doi.org/10.2147/RMHP.S153188 PMid:30584381 PMCid:PMC6281155
  • Gupta V, Kumar D, Dwivedi A, Vishwakarma U, Malik DS, Paroha S, Mohan N, Gupta N. Heavy metal contamination in river water, sediment, groundwater and human blood, from Kanpur, Uttar Pradesh, India. Environ Geochem Health; 2022. https://doi.org/10.1007/s10653-022-01290-0 PMCid:PMC9650661
  • Majumder S, Nath B, Sarkar S, Chatterjee D, Roman-Ross G, Hidalgo M. Size-fractionation of groundwater arsenic in alluvial aquifers of West Bengal, India: The role of organic and inorganic colloids. Sci Total Environ. 2014; 468- 469:804-12. https://doi.org/10.1016/j.scitotenv.2013.08.087 PMid:24070874
  • Barral-Fraga L, Barral MT, MacNeill KL, Martiñá-Prieto D, Morin S, Rodríguez-Castro MC, Tuulaikhuu BA, Guasch H. Biotic and abiotic factors influencing arsenic biogeochemistry and toxicity in fluvial ecosystems: A review. Int J Environ Res Public Health. 2020; 17(7):2331. https://doi.org/10.3390/ijerph17072331 PMid:32235625 PMCid:PMC7177459
  • Sher S, Rehman A. Use of heavy metals resistant bacteria- a strategy for arsenic bioremediation. Appl Microbiol Biotechnol. 2019; 103(15):6007-6021. https://doi. org/10.1007/s00253-019-09933-6 PMid:31209527
  • Garza-Lombó C, Pappa A, Panayiotidis MI, Gonsebatt ME, Franco R. Arsenic-induced neurotoxicity: A mechanistic appraisal. J Biol Inorg Chem. 2019 Dec; 24(8):1305-1316. https://doi.org/10.1007/s00775-019- 01740-8 PMid:31748979 PMCid:PMC6903391
  • Kumar A, Rahman MS, Ali M, Salaun P, Gourain A, Kumar S, Kumar R, Niraj PK, Kumar M, Kumar D, Bishwapriya A, Singh S, Murti K, Dhingra S, Sakamoto M, Ghosh AK. Assessment of disease burden in the arsenic exposed population of Chapar village of Samastipur district, Bihar, India, and related mitigation initiative. Environ Sci Pollut Res Int. 2022; 29(18):27443-27459. https://doi.org/10.1007/s11356- 021-18207-6 PMid:34982385
  • Chakraborti D, Singh SK, Rahman MM, Dutta RN, Mukherjee SC, Pati S, Kar PB. Groundwater arsenic contamination in the ganga river basin: A future health danger. Int J Environ Res Public Health. 2018; 15(2):180. https://doi.org/10.3390/ijerph15020180 PMid:29360747 PMCid:PMC5858255
  • Kumar A, Kumar R, Rahman MS, Ali M, Kumar R, Nupur N, Gaurav A, Raj V, Anand G, Niraj PK, Kumar N, Srivastava A, Biswapriya A, Chand GB, Kumar D, Rashmi T, Kumar S, Sakamoto M, Ghosh AK. Assessment of arsenic exposure in the population of Sabalpur village of Saran District of Bihar with mitigation approach. Environ Sci Pollut Res Int. 2021; 28(32):43923-43934. https://doi.org/10.1007/s11356- 021-13521-5 PMid:33840036
  • Khan MU, Rai N. Distribution, geochemical behaviour, and risk assessment of arsenic in different floodplain aquifers of middle Gangetic basin, India. Environ Geochem Health. 2022. https://doi.org/10.1007/s10653-022-01321-w
  • Madhawi R, Pandey A, Raj S, Mandal M, Devi S, Sinha PK, Singh RK. Geographical pattern of carcinoma gallbladder in Bihar and its association with river Ganges and arsenic levels: Retrospective individual consecutive patient data from Regional Cancer Centre. South Asian J Cancer. 2018; 7(3):167-170. https://doi.org/10.4103/sajc.sajc_37_18 PMid:30112331 PMCid:PMC6069329
  • Asere TG, Stevens CV, Du Laing G. Use of (modified) natural adsorbents for arsenic remediation: A review. Sci Total Environ. 2019; 676:706-720. https://doi.org/10.1016/j.scitotenv. 2019.04.237 PMid:31054415
  • Frisbie SH, Mitchell EJ. Arsenic in drinking water: An analysis of global drinking water regulations and recommendations for updates to protect public health. PLoS One. 2022; 17(4):e0263505. https://doi.org/10.1371/journal. pone.0263505 PMid:35385526 PMCid:PMC8985943
  • Richards LA, Kumar A, Shankar P, Gaurav A, Ghosh A, Polya DA. Distribution and geochemical controls of arsenic and uranium in groundwater-derived drinking water in Bihar, India. Int J Environ Res Public Health. 2020; 17(7):2500. https://doi.org/10.3390/ijerph17072500 PMid:32268538 PMCid:PMC7177302
  • Nurchi VM, Djordjevic AB, Crisponi G, Alexander J, Bjørklund G, Aaseth J. Arsenic toxicity: Molecular targets and therapeutic agents. biomolecules. 2020; 10(2):235. https://doi.org/10.3390/biom10020235 PMid:32033229 PMCid:PMC7072575
  • Upadhyay MK, Shukla A, Yadav P, Srivastava S. A review of arsenic in crops, vegetables, animals and food products. Food Chem. 2019; 276:608-618. https://doi.org/10.1016/j. foodchem.2018.10.069 PMid:30409639
  • Young JL, Cai L, States JC. Impact of prenatal arsenic exposure on chronic adult diseases. Syst Biol Reprod Med. 2018; 64(6):469-483. https://doi.org/10.1080/19396368.2018.148 0076 PMid:29873257 PMCid:PMC6291241
  • Kumar A, Ali M, Raj V, Kumari A, Rachamalla M, Niyogi S, Kumar D, Sharma A, Saxena A, Panjawani G, Jain P, Vidyarthi A, Kumar N, Kumar M, Niraj PK, Rahman MS, Bishwapriya A, Kumar R, Sakamoto M, Kumar S, Singh M, Ghosh AK. Arsenic causing gallbladder cancer disease in Bihar. Sci Rep. 2023; 13(1):4259. https:// doi.org/10.1038/s41598-023-30898-0 PMid:36918592 PMCid:PMC10014949
  • Järup L. Hazards of heavy metal contamination. Br Med Bull. 2003;68:167-82. doi:10.1093/bmb/ldg032. PMID: 14757716.
  • Saha S, Sadhukhan P, Mahalanobish S, Dutta S, Sil PC. Ameliorative role of genistein against age-dependent chronic arsenic toxicity in murine brains via the regulation of oxidative stress and inflammatory signaling cascades. J Nutr Biochem. 2018; 55:26-40. https://doi.org/10.1016/j. jnutbio.2017.11.010 PMid:29331881
  • Minatel BC, Sage AP, Anderson C, Hubaux R, Marshall EA, Lam WL, Martinez VD. Environmental arsenic exposure: From genetic susceptibility to pathogenesis. Environ Int. 2018; 112:183-197. https://doi.org/10.1016/j. envint.2017.12.017 PMid:29275244
  • Rehman MYA, Briedé JJ, van Herwijnen M, Krauskopf J, Jennen DGJ, Malik RN, Kleinjans JCS. Integrating SNPsbased genetic risk factor with blood epigenomic response of differentially arsenic-exposed rural subjects reveals diseaseassociated signaling pathways. Environ Pollut. 2022; 292(Pt A):118279. https://doi.org/10.1016/j.envpol.2021.118279 PMid:34619179
  • Kumar V, Akhouri V, Singh SK, Kumar A. Phytoremedial effect of Tinospora cordifolia against arsenic induced toxicity in Charles Foster rats. Biometals. 2020; 33(6):379- 396. https://doi.org/10.1007/s10534-020-00256-y PMid:33026605
  • Sharma AK, Kaur J, Kaur T, Singh B, Yadav HN, Pathak D, Singh AP. Ameliorative role of bosentan, an endothelin receptor antagonist, against sodium arsenite-induced renal dysfunction in rats. Environ Sci Pollut Res Int. 2021; 28(6):7180-7190. https://doi.org/10.1007/s11356-020- 11035-0 PMid:33026618
  • Palma-Lara I, Martínez-Castillo M, Quintana-Pérez JC, Arellano-Mendoza MG, Tamay-Cach F, Valenzuela-Limón OL, García-Montalvo EA, Hernández-Zavala A. Arsenic exposure: A public health problem leading to several cancers. Regul Toxicol Pharmacol. 2020; 110:104539. https:// doi.org/10.1016/j.yrtph.2019.104539 PMid:31765675
  • Fu Z, Xi S. The effects of heavy metals on human metabolism. Toxicol Mech Methods. 2020; 30(3):167-176. https:// doi.org/10.1080/15376516.2019.1701594 PMid:31818169
  • Soni V, Raizada P, Singh P, Cuong HN, S R, Saini A, Saini RV, Le QV, Nadda AK, Le TT, Nguyen VH. Sustainable and green trends in using plant extracts for the synthesis of biogenic metal nanoparticles toward environmental and pharmaceutical advances: A review. Environ Res. 2021; 202:111622. https://doi.org/10.1016/j.envres.2021.111622 PMid:34245729
  • Sharma AK, Kaur J, Kaur T, Singh B, Yadav HN, Pathak D, Singh AP. Ameliorative role of bosentan, an endothelin receptor antagonist, against sodium arsenite-induced renal dysfunction in rats. Environ Sci Pollut Res Int. 2021; 28(6):7180-7190. https://doi.org/10.1007/s11356-020- 11035-0 PMid:33026618
  • Qamar M, Akhtar S, Ismail T, Wahid M, Abbas MW, Mubarak MS, Yuan Y, Barnard RT, Ziora ZM, Esatbeyoglu T. Phytochemical profile, biological properties, and food applications of the medicinal plant Syzygium cumini. Foods. 2022; 11(3):378. https://doi.org/10.3390/foods11030378 PMid:35159528 PMCid:PMC8834268
  • Chhikara N, Kaur R, Jaglan S, Sharma P, Gat Y, Panghal A . Bioactive compounds and pharmacological and food applications of Syzygium cumini- A review. Food Funct. 2018; 9(12):6096-6115. https://doi.org/10.1039/C8FO00654G PMid:30379170
  • Khadivi A, Mirheidari F, Saeidifar A, Moradi Y. Selection of the promising accessions of jamun (Syzygium cumini (L.) skeels) based on pomological characterizations. Food Sci Nutr. 2022; 11(1):470-480. https://doi.org/10.1002/ fsn3.3078 PMid:36655090 PMCid:PMC9834840
  • Rizvi MK, Rabail R, Munir S, Inam-Ur-Raheem M, Qayyum MMN, Kieliszek M, Hassoun A, Aadil RM. Astounding health benefits of jamun (Syzygium cumini) toward metabolic syndrome. Molecules. 2022; 27(21):7184. https:// doi.org/10.3390/molecules27217184 PMid:36364010 PMCid:PMC9654918
  • Quenon C, Hennebelle T, Butaud JF, Ho R, Samaillie J, Neut C, Lehartel T, Rivière C, Siah A, Bonneau N, Sahpaz S, Anthérieu S, Lebegue N, Raharivelomanana P, Roumy V. Antimicrobial properties of compounds isolated from Syzygium malaccense (L.) Merr. and L.M. Perry and medicinal plants used in French Polynesia. Life (Basel). 2022; 12(5):733. https://doi.org/10.3390/life12050733 PMid:35629400 PMCid:PMC9147835
  • Batiha GE, Alkazmi LM, Wasef LG, Beshbishy AM, Nadwa EH, Rashwan EK. Syzygium aromaticum L. (Myrtaceae): Traditional uses, bioactive chemical constituents, pharmacological and toxicological activities. Biomolecules. 2020; 10(2):202. https://doi.org/10.3390/biom10020202 PMid:32019140 PMCid:PMC7072209
  • Fernandes PAS, Pereira RLS, Santos ATLD, Coutinho HDM, Morais-Braga MFB, da Silva VB, Costa AR, Generino MEM, de Oliveira MG, de Menezes SA, Santos LTD, Siyadatpanah A, Wilairatana P, Portela TMA, Gonçalo MABF, Almeida-Bezerra JW. Phytochemical analysis, antibacterial activity and modulating effect of essential oil from Syzygium cumini (L.) skeels. Molecules. 2022; 27(10):3281 https://doi.org/10.3390/molecules27103281 PMid:35630757 PMCid:PMC9145283
  • Nunes PC, Aquino Jde S, Rockenbach II, Stamford TL. Physico-chemical characterization, bioactive compounds and antioxidant activity of malay apple [Syzygium malaccense (L.) Merr. & L.M. Perry]. PLoS One. 2016; 11(6):e0158134. https://doi.org/10.1371/journal. pone.0158134 PMid:27352306 PMCid:PMC4924819
  • Khodavirdipour A, Zarean R, Safaralizadeh R. Evaluation of the anti-cancer effect of Syzygium cumini ethanolic extract on HT-29 colorectal cell line. J Gastrointest Cancer. 2021; 52(2):575-581. https://doi.org/10.1007/s12029-020- 00439-3 PMid:32506290
  • Chagas VT, Coelho RMRS, Gaspar RS, da Silva SA, Mastrogiovanni M, Mendonça CJ, Ribeiro MNS, Paes AMA, Trostchansky A. Protective effects of a polyphenol-rich extract from Syzygium cumini (L.) skeels leaf on oxidative stress-induced diabetic rats. Oxid Med Cell Longev. 2018; 2018:5386079. Erratum in: Oxid Med Cell Longev. 2019 Jan 9; 2019:5785798. https://doi.org/10.1155/2018/5386079 PMid:30046378 PMCid:PMC6038589
  • Ahmed R, Tariq M, Hussain M, Andleeb A, Masoud MS, Ali I, Mraiche F, Hasan A. Phenolic contents-based assessment of therapeutic potential of Syzygium cumini leaves extract. PLoS One. 2019;14(8):e0221318. https:// doi.org/10.1371/journal.pone.0221318 PMid:31465475 PMCid:PMC6715210
  • Oliveira DT, Fernandes IDC, Sousa GG, Santos TAPD, Paiva NCN, Carneiro CM, Evangelista EA, Barboza NR, Guerra-Sá R. High-sugar diet leads to obesity and metabolic diseases in ad libitum -fed rats irrespective of caloric intake. Arch Endocrinol Metab. 2020; 64(1):71-81. https:// doi.org/10.20945/2359-3997000000199 PMid:32187264
  • Sharma RJ, Gupta RC, Bansal AK, Singh IP. Metabolite fingerprinting of eugenia jambolana fruit pulp extracts using NMR, HPLC-PDA-MS, GC-MS, MALDI-TOF-MS and ESI-MS/ MS Spectrometry. Nat Prod Commun. 2015; 10(6):969-76. https://doi.org/10.1177/1934578X1501000644
  • Mishra R, Kotagale N, Umekar M, Sahu R, Maliye A, Gurav S. Development and validation of chromatographic method for the standardization of homeopathic formulation of Syzygium Cumini. Homeopathy. 2021; 110(3):180-185. https://doi.org/10.1055/s-0041-1726019 PMid:34020480
  • Verma PK, Singh P, Sharma P, Sood S, Raina R. Dosedependent oxidative damage in erythrocytes and hepatic tissue of Wistar rats concurrently exposed with arsenic and quinalphos: A subacute study. Biol Trace Elem Res. 2022; 200(5):2160-2173. https://doi.org/10.1007/s12011-021- 02807-x PMid:34189676
  • Islam MT, Quispe C, El-Kersh DM, Shill MC, Bhardwaj K, Bhardwaj P, Sharifi-Rad J, Martorell M, Hossain R, Al-Harrasi A, Al-Rawahi A, Butnariu M, Rotariu LS, Suleria HAR, Taheri Y, Docea AO, Calina D, Cho WC. A literature- based update on Benincasa hispida (Thunb.) Cogn.: Traditional uses, nutraceutical, and phytopharmacological profiles. Oxid Med Cell Longev. 2021; 2021:6349041. https://doi.org/10.1155/2021/6349041 PMid:34925698 PMCid:PMC8683187
  • Draper HH, Hadley M. Malondialdehyde determination as index of lipid peroxidation. Methods Enzymol. 1990; 186:421-31. https://doi.org/10.1016/0076-6879(90)86135-I PMid:2233309
  • Reitman S, Frankel S. A colorimetric method for the determination of serum glutamic oxalacetic and glutamic pyruvic transaminases. Am J Clin Pathol. 1957; 28(1):56- 63. https://doi.org/10.1093/ajcp/28.1.56 PMid:13458125
  • Ahmad MH, Fatima M, Hossain M, Mondal AC. Evaluation of naproxen-induced oxidative stress, hepatotoxicity and invivo genotoxicity in male Wistar rats. J Pharm Anal. 2018; 8(6):400-406. https://doi.org/10.1016/j.jpha.2018.04.002 PMid:30595947 PMCid:PMC6308023
  • Poon PK. A Jendrassik-Grof method modified to eliminate hemoglobin interference with assay of total Serum bilirubin. Clin Chem. 1981; 27(4):636-7. https://doi.org/10.1093/ clinchem/27.4.636a PMid:7471441
  • Scott KA, Penner GB, Mutsvangwa T. Influence of forage level and corn grain processing on whole-body urea kinetics, and serosal-to-mucosal urea flux and expression of urea transporters and aquaporins in the ovine ruminal, duodenal, and cecal epithelia. J Anim Sci. 2020; 98(4):skaa098. https://doi.org/10.1093/jas/skaa098 PMid:32227169 PMCid:PMC7174056
  • Ou YN, Zhao B, Fu Y, Sheng ZH, Gao PY, Tan L, Yu JT. The association of serum uric acid level, gout, and alzheimer’s disease: A bidirectional mendelian randomization study. J Alzheimers Dis. 2022; 89(3):1063-1073. https://doi.org/10.3233/JAD-220649 PMid:35964198
  • Zhou X, Hong W, Chen W, Feng X, Zhang Z, Zhang X, Fu C, Xiao J, Ye Z. The urinary β2 microglobulin-creatinine ratio is inversely associated with lumbar spine bone mineral density in the elderly Chinese males. Arch Osteoporos. 2020 Jun 18; 15(1):90. https://doi.org/10.1007/s11657-020- 00764-x PMid:32556596
  • Gonçalves-de-Albuquerque CF, Barnese MRC, Soares MA, Castro Faria MV, Silva AR, Castro Faria Neto HC, Burth P, Younes-Ibrahim M. Serum albuminfatty acid saturation test. MethodsX. 2019 Aug 24; 6:1871-1875. https://doi.org/10.1016/j.mex.2019.08.004 PMid:31508324 PMCid:PMC6726920
  • Moron MS, Depierre JW, Mannervik B. Levels of glutathione, glutathione reductase and glutathione S-transferase activities in rat lung and liver. Biochim Biophys Acta. 1979; 582(1):67-78. https://doi.org/10.1016/0304- 4165(79)90289-7 PMid:760819
  • Misra HP, Fridovich I. Superoxide dismutase: “positive” spectrophotometric assays. Anal Biochem. 1977; 79(1- 2):553-60. https://doi.org/10.1016/0003-2697(77)90429-8 PMid:17332
  • Góth L. A simple method for determination of serum catalase activity and revision of reference range. Clin Chim Acta. 1991; 196(2-3):143-51. https://doi. org/10.1016/0009-8981(91)90067-M PMid:2029780
  • Ashley K. NIOSH Manual of Analytical Methods 5th Edition and Harmonization of Occupational Exposure Monitoring. Gefahrst Reinhalt Luft. 2015; 2015(1-2):7-16.
  • Alarcón-Herrera MT, Martin-Alarcon DA, Gutiérrez M, Reynoso-Cuevas L, Martín-Domínguez A, Olmos- Márquez MA, Bundschuh J. Co-occurrence, possible origin, and health-risk assessment of arsenic and fluoride in drinking water sources in Mexico: Geographical data visualization. Sci Total Environ. 2020; 698:134168. https:// doi.org/10.1016/j.scitotenv.2019.134168 PMid:31505353
  • Renu K, Chakraborty R, Myakala H, Koti R, Famurewa AC, Madhyastha H, Vellingiri B, George A, Valsala Gopalakrishnan A. Molecular mechanism of heavy metals (Lead, Chromium, Arsenic, Mercury, Nickel and Cadmium) - induced hepatotoxicity- A review. Chemosphere. 2021; 271:129735. https://doi.org/10.1016/j.chemosphere.2021.129735 PMid:33736223
  • Alsubih M, El Morabet R, Khan RA, Khan NA, Ul Haq Khan M, Ahmed S, Qadir A, Changani F. Occurrence and health risk assessment of arsenic and heavy metals in groundwater of three industrial areas in Delhi, India. Environ Sci Pollut Res Int. 2021; 28(44):63017-63031. https://doi.org/10.1007/ s11356-021-15062-3 PMid:34218378
  • Raju NJ. Arsenic in the geo-environment: A review of sources, geochemical processes, toxicity and removal technologies. Environ Res. 2022; 203:111782. https://doi. org/10.1016/j.envres.2021.111782 PMid:34343549
  • Kumar A, Kumar V, Akhouri V, Kumar R, Ali M, Rashmi T, Chand GB, Singh SK, Ghosh AK. Protective efficacy of Coriandrum sativum seeds against arsenic induced toxicity in Swiss albino mice. Toxicol Res. 2022; 38(4):437- 447. https://doi.org/10.1007/s43188-022-00123-7 PMid:36277360
  • Abu El-Saad AM, Al-Kahtani MA, Abdel-Moneim AM. N-acetylcysteine and meso-2,3-dimercaptosuccinic acid alleviate oxidative stress and hepatic dysfunction induced by sodium arsenite in male rats. Drug Des Devel Ther. 2016; 10:3425-3434. https://doi.org/10.2147/DDDT.S115339 PMid:27799742 PMCid:PMC5076801
  • Bakour M, Soulo N, Hammas N, Fatemi HE, Aboulghazi A, Taroq A, Abdellaoui A, Al-Waili N, Lyoussi B. The antioxidant content and protective effect of argan oil and Syzygium aromaticum essential oil in hydrogen peroxideinduced biochemical and histological changes. Int J Mol Sci. 2018; 19(2):610. https://doi.org/10.3390/ijms19020610 PMid:29463041 PMCid:PMC5855832
  • Srikanta AH, Kumar A, Sukhdeo SV, Peddha MS, Govindaswamy V. The antioxidant effect of mulberry and jamun fruit wines by ameliorating oxidative stress in streptozotocin- induced diabetic Wistar rats. Food Funct. 2016; 7(10):4422-4431. https://doi.org/10.1039/C6FO00372A PMid:27711821
  • Rana MN, Tangpong J, Rahman MM. Toxicodynamics of Lead, Cadmium, Mercury and Arsenic- induced kidney toxicity and treatment strategy: A mini review. Toxicol Rep. 2018; 5:704-713. https://doi.org/10.1016/j. toxrep.2018.05.012 PMid:29992094 PMCid:PMC6035907
  • Thangapandiyan S, Ramesh M, Miltonprabu S, Hema T, Jothi GB, Nandhini V. Sulforaphane potentially attenuates arsenic-induced nephrotoxicity via the PI3K/Akt/Nrf2 pathway in albino Wistar rats. Environ Sci Pollut Res Int. 2019; 26(12):12247-12263. https://doi.org/10.1007/s11356- 019-04502-w PMid:30835071 PMCid:PMC6476857
  • Gaschler MM, Stockwell BR. Lipid peroxidation in cell death. Biochem Biophys Res Commun. 2017; 482(3):419-425 https://doi.org/10.1016/j.bbrc.2016.10.086 PMid:28212725 PMCid:PMC5319403
  • Demirci-Çekiç S, Özkan G, Avan AN, Uzunboy S, Çapanoğlu E, Apak R. Biomarkers of Oxidative Stress and Antioxidant Defense. J Pharm Biomed Anal. 2022; 209:114477. https://doi.org/10.1016/j.jpba.2021.114477 PMid:34920302
  • Juan CA, Pérez de la Lastra JM, Plou FJ, Pérez- Lebeña E. The chemistry of Reactive Oxygen Species (ROS) revisited: Outlining their role in biological macromolecules (DNA, Lipids and Proteins) and induced pathologies. Int J Mol Sci. 2021; 22(9):4642. https://doi.org/10.3390/ijms22094642 PMid:33924958 PMCid:PMC8125527
  • Remigante A, Morabito R. Cellular and molecular mechanisms in oxidative stress-related diseases. Int J Mol Sci. 2022; 23(14):8017. https://doi.org/10.3390/ijms23148017 PMid:35887362 PMCid:PMC9317101
  • Ijaz MU, Anwar H, Iqbal S, Ismail H, Ashraf A, Mustafa S, Samad A. Protective effect of myricetin on nonylphenolinduced testicular toxicity: Biochemical, steroidogenic, hormonal, spermatogenic, and histological-based evidences. Environ Sci Pollut Res Int. 2021 May; 28(18):22742- 22757. https://doi.org/10.1007/s11356-020-12296-5 PMid:33423203
  • Simas Frauches N, Montenegro J, Amaral T, Abreu JP, Laiber G, Junior J, Borguini R, Santiago M, Pacheco S, Nakajima VM, Godoy R, Teodoro AJ. Antiproliferative activity on human colon adenocarcinoma cells and in vitro antioxidant effect of anthocyanin-rich extracts from peels of species of the Myrtaceae Family. Molecules. 2021; 26(3):564. https://doi.org/10.3390/molecules26030564 PMid:33498977 PMCid:PMC7865521
  • Santos CA, Almeida FA, Quecán BXV, Pereira PAP, Gandra KMB, Cunha LR, Pinto UM. Bioactive properties of Syzygium cumini (L.) skeels pulp and seed phenolic extracts. Front Microbiol. 2020; 11:990. https://doi.org/10.3389/ fmicb.2020.00990 PMid:32528438 PMCid:PMC7266875

Abstract Views: 126

PDF Views: 0




  • Therapeutic Protection of Arsenic-Induced Oxidative Stress and Hepato-Nephro Toxicity by Syzygium cumini (Seed) Ethanolic Extract (SCEE) in Charles Foster Rats

Abstract Views: 126  |  PDF Views: 0

Authors

Prabhat Shankar
University Department of Zoology, Jai Prakash University, Chapra - 841301, Bihar, India
Rana Vikram Singh
University Department of Zoology, Jai Prakash University, Chapra - 841301, Bihar, India
Arun Kumar
Mahavir Cancer Sansthan and Research Centre, Patna - 801505, Bihar, India

Abstract


Arsenic (As) is an environmental toxin distributed in groundwater which is presently a global concern. The present study aimed to investigate the efficacy of SCEE in the mitigation of arsenic-induced hepato-renal dysfunction and oxidative stress in rats. Thirty male Charles foster rats (140-160 g) were randomly assigned into three groups. Group I (n = 6) - Control, Group II (n = 6) - SCEE control was administrated with 600 mg kg-1 body weight daily for 60 days and the last Group III (n = 24) was As-treated at 8 mg kg-1 body weight daily for 90 days. Subsequently, Group III was further divided into three subgroups. The subgroup I (n = 6) was immediately sacrificed to observe the arsenic-induced toxicity. Subgroup II (n = 6) was kept on a normal diet for 60 days for auto recovery. Subgroup III (n = 6) was administrated orally by SCEE at 600 mg kg-1 body weight daily for 60 days to decipher the therapeutic potential against arsenic-induced toxicity. The experimental exposure reveals various changes in biochemical parameters of the liver function test and kidney function test in addition to histopathological studies. Chronic exposure to arsenic significantly (p < 0.0001) increased the levels of lipid peroxidation along with significantly reducing the activity of glutathione, superoxide dismutase and catalase. Significant (p < 0.0001) arsenic accumulation was observed in the hepatic-nephron tissues. The dose-dependent SCEE administration against Astoxicity had progressive survival benefits on antioxidant levels, enzymatic activities and histopathological changes. Thus, the study concludes that S.cumini seed has a protective effect against As-induced oxidative stress and hepato-renal intoxication.

Keywords


Hepato-Nephro Protective Activity, Oxidative Stress, S. cumini, Sodium Arsenite.

References





DOI: https://doi.org/10.18311/ti%2F2023%2Fv30i2%2F32429