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1. Introduction 

Although native to the Amazon Basin area, the rubber (Hevea brasiliensis) plantations have successfully been 
introduced to other tropical countries across the world (Venkatachalam, Geetha, Sangeetha, & Thulaseedharan, 2013). 
There has been massive expansion of rubber plantations in the tropical and sub-tropical regions of the world over the past 
50 years (Chen et al., 2016).  This rapid development of rubber plantations is recorded in Southeast-Asia and Africa with 
an estimated total area of 10 million hectares (M ha) out of the estimated 4 billion hectares (B ha) for total world forests 
(FAO, 2010). Thus, rubber plantations constitute a quarter of total world forest cover since they are considered as planted 
forests (Egbe, 2012).  

Increasing estimates of area coverage for rubber plantations require an insight into environmental impacts in 
relation to the amount of carbon it sequesters as a carbon pool (Nizami et al., 2014). For plant growth and development, 
rubber plantations like every other vegetation sequester carbon owing to accumulations in the below ground biomass 
(BGB), soil organic carbon (SOC), latex production and most significantly above ground biomass (AGB) (Blagodatsky, Xu, & 
Cadisch, 2016). The sequestration abilities of rubber thrive on the age, management and environmental (climatic and 
topographical) factors. 

Remote Sensing approach of using satellite imagery to extract the biophysical properties of vegetation in order to 
calculate biomass and subsequently carbon has gain notoriety (Lu et al., 2014). To validate the accuracy of remotely 
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Abstract: 
The evolution of remote sensing technologies has improved scientific study and research. The often high cost of satellite 
images has led to research into alternative remotely sensed data for various analysis. Google earth data being cheap and 
readily available has been employed in many analyses including textural analysis with positive results. The application of 
OBIA to google earth image was employed in this study to assess the predictive ability of rubber tree diameter at breast 
height towards carbon modelling. Out of a total of 190 manually delineated tree crowns, 102 trees were found to have a 
1 to 1 matching with segmented crowns on the Google Earth images were used. For the whole study area over- 
segmentation value was 0.43 (43% error) and the under-segmentation was 0.32 (32% error) with the D-Value computed 
as 0.38 (38% error) which means that the segmentation accuracy is 62%. Models developed from the segmentation 
process and field data were linear, quadratic and cubic models with R2 of 0.014, 0.137 and 0.139 respectively. Primarily, 
these poor R2 values are due to the fact that Google earth images have poor spectral values, red and infrared portions 
are absent which affect the clear crown detection of the tree canopies. The tree canopies are equally highly clustered, 
therefore with poor spectral values individual tree detection using OBIA procedure achieves very little success in the 
diameter at breast height prediction. 
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sensed data, it is complemented with field data collected by means of sampled biophysical properties. This technology may 
employ active sensors or passive sensors which are dependent on detection of reflected solar radiation from the earth 
surface (mostly optical sensors) (Lu, 2006). Remote sensing approach presents a faster way of data collection over vast 
areas and is less labour intensive compared to the destructive method of tree felling. Optical imagery with Very High 
Resolution (VHR) of less than 5 m provide fine details which help to extract tree parameters such as the crown projected 
area (CPA) which forms a basis for extracting tree parameters for biomass estimation (Karna et al., 2015).  

Image segmentation method can be used to extract tree biophysical information from VHR or object-based image 
analysis (OBIA) aids in segregating image objects into distinct non overlapping elements by considering spectral, shape, 
textural, pattern including the location (Bakx et al., 2013). This combination of VHR imagery and segmentation based on 
objects proves useful for biomass and carbon estimation since it gives biophysical details for individual trees(Hay, Castilla, 
Wulder, & Ruiz, 2005). 

Carbon estimation of rubber plantations for vast areas could be tedious and cumbersome given time and financial 
resources. The measurement of tree biophysical characteristics such as Diameter at Breast Height (DBH) as an input for 
allometric equations to estimate carbon from rubber plantations can be done indirectly using segmented crowns from 
Very High Resolution (VHR) remotely sensed data. The availability of free Very High Resolution (VHR) Imagery from 
Google Earth could serve as a useful indirect method for carbon estimation. The application of Google EarthImagery for the 
extraction of rubber tree crowns for carbon estimation has not yet been well explored. 
Therefore, the potential of using Google Earth Images to estimate aboveground and belowground carbon across different 
ages of rubber plantations is explored by this study. 
 
2. Materials and Methods 
 
2.1. Study Area 
 

 
Figure 1: Study Area 
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2.2. Data 
Stratified random sampling procedure was used in this study since the rubber plantations are of different ages 

and are homogenous at the age class level(Omair, 2014). This method has been found to be useful for rubber plantations 
related studies for estimating carbon and biomass (Wauters et al., 2008; Charoenjit et al., 2015).The different age classes 
in this study area are 22, 21, 20, 19, 17, 12, 11 and 9 with different tree densities in each plot. 25 sample points (Figure 2) 
were randomly selected across the different age classes for the study area. 

 
Figure 2: Sample Points 

 
Global Positioning Service (GPS) devices were preloaded with coordinates of all the sample points for the field 

points data collection. Circular plots of 500m2 were made per sample point. Measurements of diameter at breast height of 
170cm (DBH170) and CPA of each tree within the plots were the parameters measured.  

 

 
Figure 1: 500 m2 Circular Plot 
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2.2.1. Image Segmentation Process 
The estimation of scale parameter (ESP) tool was loaded into the eCognition software together with the Image for 

the estimation of suitable scale for the segmentation process. Figure 4 below shows the threshold at which the Google 
Earth Imagery could be objectively segmented. The first image shows the whole trend and the second image zooms in to 
further see the value where the ROC line peaks. A scale factor of 20 was chosen for the segmentation.  

 

 
Figure 2: ROC-LV for ESP 

 
The Google Earth image was digitised into the different age classes of 22, 21, 20, 19, 17, 12, 11, and 9-year-old 

stands. The digitised classes were used to extract each age class from the Google Earth image for the segmentation process 
to be conducted on age by age basis. Manual delineation of the crowns of the individual trees observed in the plots and 
identified on the Google Earth image was conducted. The manual delineation of individual crowns was also performed 
with the aim of conducting an accuracy assessment to validate the segmented image objects.  

Although there exists other segmentation algorithms, the multi-resolution segmentation algorithm is widely used 
to successfully obtain image object segments (Hay et al., 2005; Rejaur Rahman & Saha, 2008). The scale parameter used for 
the multi-resolution segmentation was 20 with shape and compactness set at 0.5 each. This resulted in the generation of 
image object segments, however, not all the segments were proper, therefore the need to refine the segments. 

Due to the mosaic king of several images to form the Google Earth imagery, there were shadows and clouds in the 
imagery which were masked using the brightness values. These shadows and clouds were merged separately and 
classified as such and excluded from subsequent analysis. 

This algorithm was used to refine the image segments to split large crowns and clustered crowns into separate 
tree. The factor used here was 10 pixels since maximum field observation of Tree crown was observed at 3m and the 
Google Earth Image has a resolution of 30cm.  

The results of the watershed transformation did not come out as the desirable (rounded) segments, hence the 
need for the morphology algorithm to be run. The Open Image object parameter was adopted to remove pixels which were 
separated from the segmented objects. A circular mask was also created for defining the size and shape to bring about the 
almost circular shape of tree crowns. 

Undesirable image objects were removed after the watershed transformation and morphological operations. 
Image objects which were unwanted segmentation such as tiny and elongated objects were removed on the basis of 
roundness, area of pixel attributes.  The rule set which refers to the command processes employed in the segmentation 
process is as shown below in Figure 5. 
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Figure 5: Segmentation Rule Set 

Validation of Segmentation 
 

A combination of topological, geometric and visual techniques was employed to assess the accuracy of the 
segments created using manually digitized reference polygons of the crowns of the rubber trees. This was carried out by 
considering the extent to which reference polygons and image object segments match each other in terms of position, size 
and shape by at least 50%. The overall accuracy of the segmentation results was determined using the segmentation 
goodness of fit, the “D” in Equation 1. This was made possible by first computing over-segmentation using Equations 2 and 
under-segmentation using Equation 3. The Figure 6 below shows the matching conditions as expressed by (a) over 50% 
match (b) same shape and size of segments with reference objects but for differences in position; (c) and (d) segments and 
reference objects may be of match with respect to position but not of same spatial extent.  Common areas of overlap are 
indicated in red whereas areas of differences are identifiable in blue and green respectively. 

 

 
Figure 6: Matched Cases of Extracted Objects 

Source: (Zhan, Molenaar, Tempfli & Shi, 2005) 
 
 

 
 
2.2.2. Model Development 

To analyse the relationship between then Google Earth derived CPA and DBH for the purposes of carbon 
modelling, regression analysis was conducted. A non-linear relationship between the CPA which was the dependent 
variable and the DBH as an independent variable was established. This was to help evaluate the extent to which the CPA 
could predict DBH accurately for the purposes of carbon modelling using the OBIA procedure.  

Trees with one to one matching in terms of those identified on the field and those obtained from the segmentation 
process of the Google Earth imagery were used. From the identified 102 trees 70 trees were used for the model 
development and the remained 32 were used for the validation. The Root Mean Square Error (RMSE) was computed by 
comparing the predicted values derived from the segmentation process against the observed values from the field shown 
by Equation 4. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Root Mean Square Error…......... (4) 
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3. Results 
 
3.1. Multi-Resolution Segmentation 

Results of the multi-resolution segmentation, cloud and shadow masking, morphology and watershed 
transformation is shown in Figure 7. The scale parameter set was 20 and 0.5 for both shape and compactness as obtained 
from the ESP tool. 

 
Figure 3: Tree Crown Delineation Using  

Multi-Resolution Segmentation 
 
3.2. Accuracy Assessment 

The segmentation accuracy was assessed using the goodness of fit “D” value computed from the results of over-
segmentation and under-segmentation. Out of total of 190 manually delineated tree crowns, 102 trees were found to have 
a 1 to 1 matching with segmented crowns on the Google Earth images were used. For the whole study area over- 
segmentation value was 0.43 (43% error) and the under-segmentation was 0.32 (32% error) with the D-Value computed 
as 0.38 (38% error) which means that the segmentation accuracy is 62%. Table 1 below a summary of the accuracy 
assessment. This also summary shows that over-segmentation is greater than under-segmentation. 
 

 Total Reference 
Polygons 

Total 1:1 
Match 

Over-
Segmentation 

Under-
Segmentation 

D-value 

1:1 190 102    
Goodness of fit   0.43 0.32 0.38 
Total accuracy  53.70%   62% 

Table 1: Segmentation accuracy 
 

Figure 8 shows an overlay of reference polygons for segmentation accuracy assessment in red polygons on top of 
the and Google Earth image.  
 

 
Figure 4: Shows an Overlay of the Manual Crown  
Delineation Relationship between Google Earth 

 Derived Canopy Projection Area and  
Diameter at Breast Height 
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To determine the extent to which DBH values can be predicted using Google Earth derived image object segments, 
a non-linear relationship between the Google Earth derived CPA and DBH was established. The models were developed 
using the trees spotted in the field and the trees spotted in the image. Figure 9 shows linear and non-linear relationships 
that were established between the two variables (DBH as dependent variable and Google Earth derived CPA as 
independent variable). 

 

 
Figure 9: Relationship between DBH from Field Data and 

Google Earth Derived CPA 

The linear, quadratic and cubic models were evaluated and reported in Table 2. From the models developed, the 
quadratic model had an RMSE value 0.15 and a mean absolute percentage error (MAPE) of 0.159. The cubic model 
reported a higher RMSE value of 0.28 and a MAPE of 0.161 with the linear model presenting the highest RMSE value of 
1.19 and a MAPE of 0.421. The linear, quadratic and cubic models recorded correlation co-efficient values of 0.119, 0.370 
and 0.373 and R2 values of 0.014, 0.137 and 0.139, respectively indicating a weak correction between variables. 

 
Model Type r R2 RMSE MAPE p-value 

Linear 0.119 0.014 1.190 0.421 0.327 
Quadratic 0.370 0.137 0.150 0.159 0.007 

Cubic 0.373 0.139 0.280 0.161 0.019 
Table 2: Models for estimating DBH 

 
 
4. Discussions 

Segmentation results were based on objects that exhibited 50% one to one matching between image object 
segments and manually delineated crowns (Zhan et al., 2005). The segmentation process for the Google Earth Imagery 
yielded 43% over-segmentation error for the and an under-segmentation error of 32% with overall Goodness of fit at 
62%. The segmentation accuracy does not differ much from that of Bautista (2012) who obtained 62% accuracy in 
segmentation of optical Geo-eye Image although the objects he was looking at were primary forests with larger tree crown. 
The author obtained over segmentation error of 48% of which was higher than in the case of the Google Earth Imagery 
segments although under segmentation error was lower than the Google Earth Imagery segments at 23%. Accordingly, 
Karna et al., (2015) obtained segmentation accuracy of 67% on WorldView-2 which is equally not too different from the 
overall segmentation accuracy obtained for the Google Earth Imagery segmentation from process.  

However, there are differences in the correlation coefficients and the coefficients of determination in the models 
developed in spite of the similar segmentation accuracies. The results of the modelling from the Google Earth Imagery 
segmentation indicated that none of the three models (linear, quadratic, and cubic) could strongly predict DBH. The 
correlation coefficients were weak as the best correlation coefficient was exhibited by the quadratic model which had an r 
value of 0.37 and the coefficients of determination at best was 0.137. Karna et al., (2015) and Bautista (2012) reported an r 
of 0.871 and 0.72 and an R2 of 0.759 and 0.41 showing stronger relationships between the various variables in their 
models. 

The weak correlation between the DBH and the Google Earth imagery derived CPA can be attributed to the highly 
dense nature of the rubber tree crowns coupled with the poor spectral resolution to clearly delineate the rubber tree 
crowns automatically (Hu et al., 2013). Vegetation exhibit higher reflectance in the near infrared portion which is absent 
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from the Google Earth Imagery therefore dense crowns of the same age and similar characteristics could not be clearly 
distinguished from the google image (Li & Fox, 2012). 

According to Bluman (2012), a correlation coefficient of 1 and -1 indicates a strong correlation hence as the 
correlation values decreases towards 0, a weak correlational effect exists among variables under study. The author further 
posits that coefficient of determination describes the amount of variation in predicted variables that models can explain. In 
this context the models developed from the Google Earth derived CPA could not adequately account for more than 80% of 
the variation in the DBH. Therefore, based on this study, Google Earth derived segments cannot be used to predict DBH of 
rubber plantations with dense canopy cover.  

 
5. Conclusion 

There is no relationship between Google Earth derived image object segments and field measured diameter at 
breast height. As the linear, quadratic and cubic models could only account for 1.4%, 13.7% and 13.9% of the variation in 
the diameter at breast height. 
 
6. Recommendations 

The multi-resolution segmentation process performed on the Google Earth could not lead to the development of 
accurate models to establish a relationship between the image object segments and field collected DBH. Further 
exploration should be conducted to focus on building models for each age compartment found within rubber plantations 
landscape, as well as alternative segmentation algorithms that can perform better than the multi-resolution segmentation 
algorithm. 
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