
Abstract

Despite the creation of many digital libraries, there exists considerable untapped content with
individuals in diverse communities. One major hindrance to dissemination is the centralized
frameworks under which digital libraries are organized and deployed, thus limiting their
accessibility, particularly in publishing. We have developed Freelib, a peer-to-peer-based digital
library, which is self-sustainable and supports evolving communities with diverse interests. Freelib is
built upon the existing work in the areas of OAI (Open Archive Initiative), and peer-to-peer and
social networks. The key concept of Freelib is to dynamically form virtual communities based on
users’ common interest. In order to achieve this, the Freelib client analyses user access patterns and
connects itself to other clients, the users of which show similar interest. In this paper, we present
architecture of Freelib and report on its performance evaluation. We have built an event-based
simulator, which enabled us to simulate networks of thousands of users. We study the performance
gain of using Freelib over using small-world peer-to-peer networks alone. The performance
evaluation shows that Freelib has significant performance gain over those networks in terms of
recall, network bandwidth, and search response time, with minimal cost on the part of the end-user
of the system.

World Digital Libraries 1(2): 101–120

Freelib: a peer-to-peer-based digital library architecture*

AMROU A, MALY K, and ZUBAIR M
Department of Computer Science, Old Dominion University

4700 Elkhron Ave, Ste 3300, Norfolk, VA 23529, USA

* This work is supported in part by NSF grant 033547

Email aamr@cs.odu.edu; maly@cs.odu.edu; zubair@cs.odu.edu

Amrou, Maly, and Zubair102

World Digital Libraries 1(2): 101–120

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

Overview

Digital libraries serve the purpose of
disseminating high-quality information
through the use of structured and well-defined
metadata. They provide efficient search and
retrieval services. However, most digital
libraries employ a centralized framework and
use dedicated resources such as file servers,
database servers, and Web servers. The use of
centralized framework concentrates traffic and
information in and around those servers. On
the other hand, peer-to-peer systems utilize
resources that are contributed by individual
users. This gives peer-to-peer systems desirable
criteria such as self-sustainability and high
scalability in terms of managing large number
of users (resources available grow with the
number of users). However, users of peer-to-
peer systems often suffer poor search
performance due to the prohibiting bandwidth
cost and the time needed for search queries to
reach relevant peers, who may be far away on
the peer-to-peer network. Freelib addresses
these issues by providing a framework for
building digital libraries on top of peer-to-peer
network. It takes advantage of peer-to-peer
networks to provide self-sustainability,
scalability, and distribution of traffic and
information. In addition, Freelib evolves peers
into virtual communities, who share common
interest to enhance the search performance.
Note that these virtual communities are not
static and can change with time as users’
interest changes. The key benefit of Freelib
comes from the fact that the search queries are
always targeted to fewer, but more relevant,
peers, even in the face of users’ changing
interest. This results in higher recall, faster
searches, and conservation of network
bandwidth. The enhanced performance of
Freelib comes at minimal cost to the end-user
of the system, mainly in terms of more storage
requirements, although the complexity of the
software has increased considerably.

The Freelib architecture has two overlay
networks: the support network and the access
network. The support network is based on the
symphony protocol (Manku, Bawa, and
Raghavan 2003). It maintains the connectivity
of the network and enables new nodes to
perform searches that are bound by a small-
world property symphony networks. The
access network is based on a user’s access
pattern, and it brings nodes sharing similar
interest (friends) close to each other (in a
virtual sense) and forms virtual community.
When a node detects that it has enough friend
links, it switches to the friend network for
searching. The node then continues to use the
friend network for search unless the size of
results drops significantly. In this case, the
node assumes that the community is not yet
evolved and reverts to global search using the
support network. Freelib ensures that the
friend network always reflects the current user
interest by capturing the user interest from
patterns of user access to other peers rather
than topic segmentation as in SETS (Bawa,
Manku, and Raghavan 2003). The process of
evolving users into communities of common
interest is a dynamic and distributed process.
Each node (1) monitors its user access
patterns, (2) identifies peers who share same
interest, (3) selects some of these peers
according to a ranking criteria, and (4)
establishes friend links to the selected peers.
The process is repeated periodically by each
node. This produces an ever evolving access
network in which peers who share common
interest form virtual communities.

 We have presented the Freelib architecture
in previous paper (Amrou, Maly, and Zubair
2004). We presented a preliminary evaluation
of Freelib in (Amrou, Maly, and Zubair 2006).
In this paper and the companion conference
paper (Amrou, Maly, and Zubair 2006a), we
present a more thorough performance study
of Freelib. However, for completeness of the
discussions and for the readers’ convenience,

103

World Digital Libraries 1(2): 101–120

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

Freelib: a peer-to-peer-based digital library architecture

we shall briefly overview the Freelib
architecture and the preliminary evaluation in
this paper as well. In the next section, we
explore the background and related work. In
the next section, we provide a brief summary
of the Freelib architecture, following which we
report on the experiments. Finally, we
conclude and describe our future work.

Related work

Digital library models span a wide spectrum,
ranging from fully centralized architectures
(ACM 2008; Alexandria 2008) to federated
data providers (Arc 2008; Liu, Maly, Zubair, et
al. 2001) to distributed ones (McNab, Witten,
and Boddie 1998; NZDL 2008). Only recently,
some digital libraries (Ding and Solvberg
2004; Walkerdine and Rayson 2004) have
started to utilize the peer-to-peer model. Our
Freelib architecture utilizes a peer-to-peer
model. Hence, we discuss peer-to-peer
architecture in more details in the remainder
of this section. Some peer-to-peer systems
such as Napster utilize a centralized index to
perform efficient searches, and file downloads
are done in a direct peer-to-peer fashion.
Other systems such as Freenet (Clarke,
Sandberg, Wiley, et al. 2000) and Gnutella use
pure peer-to-peer techniques. Freenet sets
anonymity as a goal. In order to achieve it, it
uses DFS (depth-first search) and results are
forwarded following the same path as the
query, rather than sending directly to the
requesting node. Gnutella, on the other hand,
uses BFS (breadth-first search). Drawbacks
and challenges faced by these and other peer-
to-peer search protocols are described in
Daswani, Garcia-Molina, and Yang (2003).
DFS search is suitable for retrieval of items
given in their identifier. It is not efficient
when used for general keyword search. BFS is
more suitable for the general keyword search.
However, it is bandwidth inefficient, as the
number of messages grows exponentially with
the TTL (time-to-live) and average node

degree (# messages = dTTL, where d is the
average degree of the nodes and TTL is the
hop limit). Considerable effort has been
devoted by researchers to address those peer-
to-peer search issues. Some techniques were
presented in Yang and Gracia-Molina (2002)
to enhance peer-to-peer search performance.
For example, iterative deepening was
proposed to use the lowest TTL possible for
processing each search query. Iterative
deepening is done by sending searches with
successively increasing TTL till the query is
satisfied. Directed DFS is another technique
that enhances selectivity of search queries. It
tries to target relevant peers by sending search
requests to those peers who provided good
results in the recent past. A third technique is
the use of local indices, in which local indices
are built at each node, indexing the content on
the peers within r hops. Other peer-to-peer
systems utilize caching, replication, and the
concept of super-peers to enhance the system
performance. Kazaa is a peer-to-peer system
that utilizes the concept of super-peers. It
utilizes nodes having high network bandwidth
to be super-nodes. Those super-nodes cache
contents from other nodes and do most of the
request forwarding and traffic. Other peer-to-
peer protocols such as SETS (Bawa, Manku,
and Raghavan 2003) and SSW (Li, Lee,
Sivasubramaniam, et al. 2004) try to enhance
the selectivity of the search query by trying to
direct search queries to target peers that have
relevant content. These systems cluster
member nodes based on the similarity of the
content such that nodes containing similar
material are connected together. To measure
the similarity of documents, these documents
are represented in some data structure such as
a keyword vector. A clustering algorithm is
run on documents to cluster them. This
approach is, however, complicated and does
not evolve quickly when user’s interest
changes between topics. These approaches are
data-centred and do not adapt with the user

Amrou, Maly, and Zubair104

World Digital Libraries 1(2): 101–120

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

interest as it evolves. For example, a
researcher might have most of his publications
in biology and at some point of time, start to
shift interest to bioinformatics. A system like
SETS will still connect such user to peers
whose publications are in biology, which
hinders the user from quickly discovering and
connecting to his new community, that is,
bioinformatics.

The Freelib architecture

The Freelib architecture is explained in detail
in previous publications (Amrou, Maly, and
Zubair 2004, 2006). However, for the reader’s
convenience, we overview the key parts of the
architecture in this section. The Freelib
architecture consists of two overlay networks:
the symphony network and the access
network. The symphony network is a small-
world network, which is built based on the
symphony protocol (Manku, Bawa, and
Raghavan 2003). Small-world networks have
the desirable criterion that the network
diameter (the maximum number of hops
between any two nodes) is small compared to
the size of the network (Kleinberg 2000; Watts
and Strogatz 1998). For symphony, the
network diameter is (log2n)/K, where n is the
number of nodes (the network size) and K is
the number of long contacts per node. The
purpose of the symphony network is to
provide a way for new nodes to search and
discover their communities. New nodes use
the symphony layer to submit and forward
search queries. When the Freelib client at a
node detects that it has enough Friend links, it
switches to use the access network for
submitting and forwarding all search queries.
The access network is built such that nodes
that share common interest evolve into virtual
communities. Freelib utilizes adaptive and
dynamic techniques for evolving these user
communities. Each client monitors its user
accesses, identifies peers who are of interest to
its local user, and connects itself to few of

those peers. To identify peers whose interest is
similar to a user, the client maintains an
access log and periodically performs a ranking
process that uses the most recent accesses. The
outcome of the ranking process is an ordered
list of peers. The client tries to establish friend
links to few peers from the ranked list. Every
time the ranking process is performed, the
friend links are updated to reflect the latest
ranked list. The use of the most recent
accesses in the ranking process ensures that
the user’s current interest is always reflected
in the results of the ranking. The ranking
measures and the details of the ranking
process are explained in detail in Amrou,
Maly, and Zubair (2004, 2006). The Freelib
network architecture is shown in Figure 1.

Peer ranking

The purpose of peer ranking is to provide a
ranked list of peers, which serves as a list of
candidates for building friend links. For a
node N

i
, mutual access with other nodes

consists of two components, incoming
accesses and outgoing accesses. We need to
design a ranking function that has the
following characteristics and features.
• It increases monotonically as the number of

accesses increase.
• It takes into consideration both the incoming

and outgoing components of the access data.

Figure 1 Freelib network architecture

105

World Digital Libraries 1(2): 101–120

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

Freelib: a peer-to-peer-based digital library architecture

N
j
. Notice that the value of each of these terms

increases as the number of accesses (a
ij
 in the

first and a
ji
 in the second) increases. Dividing

by the total number of accesses in each of the
two terms is not necessary. It, however,
normalizes the ranks into values between 0.0
and 1.0 inclusive. In fact, R

i
is a probability

function with 0 < R
i
(N

j
) < and Σ R

i
 (N

i
) = 1.

According to our ranking formula above,
the more the mutual accesses with a node, the
higher the rank it receives. After ranking
peers, the ranking node sorts them in a non-
descending order based on the ranks such that
nodes with highest ranks occupy the top of the
list. This ranked list is then used to build the
friend links for the node. As an example,
Table 1 shows the access counts for an
example network of five nodes, N

1
 to N

5
.

Table 2 gives the ranks calculated based on the
access information in Table 1 using α = 0.8.
Each row in this table gives the ranks
calculated by the corresponding node. For
example R

1
(N

2
), which is the rank of node N

2

as calculated by node N
1
, appears in the cell at

the intersection of the first row and the
second column. The value of R

1
(N

2
), as given

in the table, is 0.3303. The ranked list at node
N

4
 is the list nodes that have mutual access

with node N
4
 in a descending order of ranks.

From the fourth row in Table 2, that list is N
3
,

N
5
, N

2
, and N

1
.

Table 1 Access counts showing accesses, for

example, network of five nodes (N
1
 to N

5
)

N
1

N
2

N
3

N
4

N
5

N
1

0 17 10 13 10

N
2

7 0 9 11 15

N
3

3 11 0 14 8

N
4

6 7 14 0 11

N
5

8 5 11 6 0

j

• It allows us to assign different weights for
each of the outgoing and incoming accesses.

The requirement that ranks monotonically
increase with increasing accesses is clear, since
more accesses imply more mutual interest.
Including incoming accesses in the calculation
is needed to reflect mutual interest rather than
one party’s interest. Incoming accesses usually
are assigned lower weight compared to the
weight for outgoing accesses. Equation (1)
gives our peer ranking function. It shows the
calculation of the rank assigned to node N

j
by

node N
i
.

R N
a

a

a

a
i i

ij

ij
j

ij

ij
j

() ()= × + − ×
∑ ∑

α α1
(1)

The parameter α in Equation (1)
determines the weight for the outgoing
accesses relative to incoming accesses. Possible
values of α range from 0.0 to 1.0, where α =1.0
discards incoming accesses in the ranking
calculation; and α = 0.0 discards outgoing
accesses. We have performed some
experiments and found that α should be
typically set to some value around 0.8. This
value ensures that the outcome of the ranking
at each node is mainly derived by the local
user accesses, as it gives outgoing accesses
higher weight relative to incoming accesses.
This is very important, as outgoing accesses
are usually order of magnitudes smaller than
incoming accesses. For example, if a
community contains 100 peers accessing each
other, the incoming accesses will be 100 times
the outgoing accesses on average. In addition,
this value of α does not completely ignore
incoming accesses. They still receive some
weight and are reflected in the results of the
ranking process as well.

The first partial term a
ij
/Σa

ij
 represents the

proportion of N
i
outgoing accesses to node N

j
.

The second partial term a
ji
/Σa

ji
 represents the

proportion of N
i
 incoming accesses from node

j

j

Amrou, Maly, and Zubair106

World Digital Libraries 1(2): 101–120

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

Building the overlay topology
according to the mutual interest

The ranked list at each node contains the list
of peers who have mutual access with the
node. The peers with highest mutual access
occupy the top of the ranked list. Each node
chooses its friends from the top of its ranked
list. By doing this, we introduce spatial locality
into the topology based on mutual access. In
other words, Freelib nodes with similar
interest get closer to each other on the
topology. Consequently, the traditional peer-
to-peer forwarding of search messages takes
these messages to the most relevant nodes in
few steps on the overlay topology. The ranked
list can be utilized to build the access topology
in two different ways to realize this objective.
The first, and the simplest, is the routing table
approach. The other is the active link
approach. In the following subsections, we
explain these methods and discuss the
advantages and disadvantages of using each of
them.

Routing table approach

In this approach, the ranked list is used as a
routing table for sending out and forwarding
search queries. When a node is about to send
out or forward a search request, it sends the
search message to the first R available peers on
its ranked list. Each node that receives a search
request needs to acknowledge it to confirm its
availability. The advantages of this approach

are that it is dynamic and simple. But it does
need extra communication messages for
sending back the acknowledgements. Another
issue with this approach is that a node does
not know and does not have control on the
number of nodes keeping it as a friend (we
refer to these as incoming friends of the node
as opposed to the outgoing friends the node
selects from the top of its ranked list). This
could cause a popular node (one that every
one is accessing) to be overwhelmed with too
many requests.

Active link approach

In this approach, every node establishes active
links to R peers from the top of the ranked
list. These are full links that have a keep-alive
mechanism such as pings. The number of
friends per node, R, is typically 4 to 6. Every
time the ranking process is performed, some
friend links might need to be disconnected
and some others might need to be established
to reflect the most recent ranking results. This
whole evolution process is transparent to the
users of the system. When a node is saturated
(that is, the number of its incoming friends
Rin exceeds a certain threshold), it simply
rejects any new requests for establishing friend
links to it. Listing 3.2 outlines the algorithm
for establishing the friend links given in the
ranked list of peers as input. Listing 3.3
outlines the algorithm for processing a request
for establishing a friend received by a node.

Like the routing table approach discussed
in the previous section, this approach has
some communication overhead due to
establishing links and due to the pings. The
ping (keep-alive) messages are needed in order
to detect failure of friends. If every node
establishes R friends, then we have R × n total
friend links in a network of n nodes. Also the
network will have total c × R × n pings per
unit time, where c is a constant that represents
the number of ping messages per link per unit
time. This is Ω (n) ping messages for the

Table 2 Ranks calculated based on the access

information in Table 1, using α = 0.8

N
1

N
2

N
3

N
4

N
5

N
1

0 0.3303 0.185 0.258 0.2267

N
2

0.2183 0 0.2264 0.2445 0.3107

N
3

0.1121 0.2854 0 0.3747 0.2278

N
4

0.1854 0.1974 0.3584 0 0.2588

N
5

0.2588 0.2015 0.3297 0.21 0

107

World Digital Libraries 1(2): 101–120

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

Freelib: a peer-to-peer-based digital library architecture

whole network. Although this approach is
more complex than the routing table approach
presented in the previous section, we choose
to use it in our design, as it gives each node
control on the number of incoming friends.

Handling changing and multiple user
interest

In this section, we discuss how our current
ranking process handles changing and
multiple-topic user interest. User interest
usually shifts between topics over a period of
time. When a user’s interest shifts to a new
topic, the user typically starts to submit
searches and access peers from the new
community. Our ranking process immediately
considers new peers. In the transient period,
however, these new peers receive low ranks
compared to peers that represent the user’s
old community. As user’s accesses to the new

peers increase in numbers, they get reflected
more and more in the ranking calculations. As
the accesses to the new peers start to
outnumber old accesses, the user gets
connected to the new community. This
transition might take long time, however. We
are currently working on an enhanced ranking
process, which will speed up the transition to
the new community. The new ranking process
uses aging techniques and access weights.
Work in this area is in progress, and we shall
report on it in future papers.

In addition to shifting interest, some users
might have interest spanning multiple topics
simultaneously. In this case, user accesses are
typically split among the corresponding
communities. Our current peer ranking
process will be able to handle this scenario
reasonably. If our user’s interest is split among
a number of topics, so will be his access links,

Listing 1 Algorithm for establishing friend links

Amrou, Maly, and Zubair108

World Digital Libraries 1(2): 101–120

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

which will be split over the corresponding
communities. This may have some impact on
recall. We are investigating new techniques to
enhance Freelib handling of users with
multiple-topic interest.

Implementation

We have implemented a peer-to-peer client,
who implements the Freelib architecture.
Figure 2 shows our highly modular client
design. It consists of modules, each of which
performs a certain function of a group of
related functions. The key modules include
the network manager module, which
maintains the overlay topology, the messenger
module, which implements a messaging
framework, and the search/access modules,
which implements the search and access
protocols.

In the following subsections, we present
various implementation modules. We group
these modules according to the common
functionality or service they provide and
present each module group in separate

Listing 3.3 Processing requests to establish a

friend

Figure 2 Freelib universal client design

109

World Digital Libraries 1(2): 101–120

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

Freelib: a peer-to-peer-based digital library architecture

subsection. For example, the modules that
provide services directly to the user are in the
user modules group. Other groups include the
networks manager modules, which are
responsible for implementing the various
network and topology protocols; messaging
modules, which are responsible for
communication between peers; log and
history modules, which are responsible for
maintaining the access log, search history, and
the registry, which is a central repository for
peer info; and the collection manager
responsible for indexing and storing metadata
and full-text using the local file system of the
machine running on the Freelib client.

User modules

User service modules include four modules
that interact with the user and implement
services consumed directly by the user. The
first and immediately apparent to the user is
the user interface module. This module
provides the main graphical user interface
through which the user interacts with the
system and invokes various services, including
publishing, searching, and retrieval/access. We
borrowed most of Freelib graphical user
interface from Kepler [Kep, Mal01]. The new
features added in the case of Freelib include
multiple tabs and some of the buttons on the
main interface to invoke the new functions
provided by Freelib. Figure 3 shows the main

user interface of the Freelib client. At the top,
there is a set of buttons, which enables the
user to invoke two of the main services,
namely publishing and search. The other
buttons in this set are the settings button,
which enables the user to configure the Freelib
client; the connect/disconnect button, which
enables the user to connect to and disconnect
from the peer-to-peer network; and the help
button, which displays help information to the
user. To the right of the main buttons, an icon
is displayed. This icon is bright when the
client is connected to the network and is
greyed when it is disconnected.

The middle area of the main user interface
consists of overlay tabs for displaying the local
collection and the results for the ongoing user
search queries. The first tab is dedicated for
displaying the items available in the local
collection. For each ongoing search query, an
additional tab is created to display the results
for the query. The information inside each tab
is presented in tabular form, with each row
presenting various metadata for one item/
document from the result set (or from the
local collection in case of the first tab).

In addition to the main buttons at the top,
another set of buttons is available at the
bottom of the main user interface. These
buttons include the exit Freelib button for the
exiting Freelib client; the close tab button for
closing the current tab, the view details button

Figure 3 Freelib universal client: main user interface

Amrou, Maly, and Zubair110

World Digital Libraries 1(2): 101–120

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

for viewing the detailed metadata for the
selected item/document, and the download
button initiating download of the selected
item. The local collection tab is not closable.
When it is the current selected tab, the close
tab button is disabled. Closing a search tab
effectively releases resources allocated for the
result set associated with it. The user is always
prompted when the exit Freelib or close tab is
clicked before the corresponding action is
taken.

Figure 4 shows the Freelib publishing tool
and the Freelib configuration tool. The
publishing tool is displayed when the user
clicks the main publish button. It allows the
user to provide various metadata fields and
choose a document to publish. The
configuration tool allows the user to edit
configuration information such as port
number to use and proxy information if user
is behind proxy. It also allows the user to edit
his/her user profile, including name, e-mail
address, and description of local collection.

In addition to the user interface module,
there are three other modules related to user

services. These are the publish, search, and
access modules. The publish module is
invoked when the user submits metadata for
publishing. Currently, this module only
publishes to the local collection. In the future,
replication to other nodes might be utilized
for better availability of content. The search
module implements the search protocol. It is
invoked by the user interface module when
the user enters a search query. This module
sends out the search queries, collects results,
and forwards them back to the user interface
module. By default, this module searches the
local collection as well. In the future, this
feature, however, should be made
configurable by the user. The access module is
a simple module invoked by the user interface
module when the user clicks the download
button. It sends out access requests and
handles the responses by saving the
downloaded content into a specific
subdirectory inside the directory structure of
the installed Freelib client.

Figure 4 Freelib universal client; left: publishing tool; right: configuration tool

111

World Digital Libraries 1(2): 101–120

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

Freelib: a peer-to-peer-based digital library architecture

Messaging modules

There are two modules that implement the
messaging framework. These are the
messenger module and the HTTP module.
The messaging framework is utilized by other
modules that communicate with other Freelib
nodes, for example, the search and access
modules. The messenger module is invoked by
the other module to deliver Freelib messages
to other nodes. The messenger module
supports both synchronous and asynchronous
communication modes. In the synchronous
mode, the sender thread blocks waiting for a
response message. In the asynchronous mode,
the sender thread returns immediately, and
the messenger forwards response back to the
module as it arrives. The HTTP module
encapsulates Freelib messages in HTTP
requests and sends them out to their
destination. The HTTP module on the other
end extracts the Freelib message from the
incoming HTTP request and forwards it to the
messenger module for delivery to the
appropriate module. The messenger module
exposes two public interfaces. These interfaces
are the MessageHandler interface and the
MessengerInterface. The messenger interface
is implemented by the main messenger class.
It specifies the methods that other modules
can call to send out the various message types
supported. The MessageHandler interface
must be implemented by any module that
wishes to receive Freelib messages. The single
method declared by this interface is called by
the messenger module to deliver incoming
messages to the implementing modules.

Network modules

The network modules are the modules
responsible for implementing and maintaining
network protocols. They are four sub-modules
that are included in the main network
manager module. The first of these four
modules is the ring manager module. The ring
manager implements the join and leave

protocols. In addition, it is responsible for
maintaining the support network short
contacts. The second module is the long
contact module, which is responsible for
establishing and maintaining the support
network long contacts. The third module is
the friend manager module. The friend
manager is responsible for establishing and
maintaining friends based on the ranked list of
peers. The fourth and final module is the
maintenance manager module, which is a
helper module, which implements some
functionality used by the other network
modules for maintaining their corresponding
portion of the network architecture. Each of
these four modules implements the
MessageHandler interface and registers with
the messenger module as message handler
similar to the search module. This enables
these modules to use the messaging
framework to send and receive messages.

Log, history, and the registry

These modules implement internal
functionality, which does not directly involve
any network communication nor use of the
messaging framework. The log manager
module is responsible for logging the incoming
and outgoing access in which the local user is
involved. This is the access log that is utilized
by the peer ranking process to produce the
ranked list of peer, which is in turn used for
establishing the access contacts. The log
manager is invoked by the access module
whenever an incoming or outgoing access
occurs. Every time the peer ranking process
starts, it scans through the access log, calculates
peer ranks, and produces the ranked list.

The history module is not implemented in
the current version of the Freelib client. It is
intended for maintaining a search history of
the local user. The search history can be
utilized in many ways. It can be used to infer
useful information about the user interest. In
addition, it can be made available to the user

Amrou, Maly, and Zubair112

World Digital Libraries 1(2): 101–120

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

as necessary for selectively repeating previous
searches.

The registry module is a local repository of
local and peer information. It contains the
Freelib client configuration information and
user profile information. In addition, it contains
the most recent information about peer nodes.

The collection manager

The collection manager is responsible for
maintaining the local collection. In the
current implementation, the local collection
contains the metadata, documents, and
indexes for the content published by the local
user. In the future, content replicated from
other nodes could be maintained by the
collection manager in a separate collection.
The collection manager implements a DAO
(data access object) design patterns to allow
different implementations to be plugged into
the client. The DAO pattern exposes a public
interface, which declares the public methods
used for data access. All the details of the
implementation are hidden from the user of
the module. The supported collection types in
the current Freelib implementation are an
XML file system based collection and a
Lucene-indexed collection. The former uses
XML files to save the metadata. The latter uses
the Apache Lucene [Luc] open source software
for indexing the metadata. Other collection
types can be plugged as necessary, for
example, a database collection using JDBC
(Java database connectivity)/ODBC (open
database connectivity).

Performance evaluation

In this section, we describe our Freelib
simulator and outline the simulation process.
We then describe the experiments and present
the results.

The Freelib simulator

In our preliminary evaluation of Freelib
(Amrou, Maly, and Zubair 2006), we utilized a

cluster of 32 machines running Linux to
operate a real Freelib network. By real, we
mean running one copy of the Freelib client
software for each participating user. The only
exception to that was the user interaction with
the system, which was automated. We
succeeded in finishing our preliminary
evaluation; however, due to the resource-
intensive nature of such experiments, we were
able to emulate only small networks of up to
few hundreds of nodes. In order to evaluate
our approach with larger networks, we
developed an event-based simulator and
utilized a Sun Sparc machine, which has eight
processors and 32 GB of memory. We were
able to simulate networks of thousands of
users using the new simulator. Our simulator
is implemented entirely in Java and could be
run under various operating systems,
including UNIX, LINUX, and Windows.

Objectives and performance
measurements

The main objective of our performance study
of Freelib is to assess the performance gain
from the concept of community evolution. In
order to perform this assessment, we compare
the performance of searching using our access
network against that of searching using the
base symphony support network. Hence, the
performance of the symphony serves as the
baseline for comparison in all our results.

Our evaluation involves three different
basic measurements. The first is the average
recall over all search queries. We calculate the
recall for each individual query by dividing
the number of relevant results returned by the
number of relevant results in the community.
The second measurement is the average
bandwidth usage, calculated as the number of
application-level messages rather than real
bandwidth. The third measurement is the
response time, measured as the number of
hops on the Freelib network topology rather
than physical hops or clock time. In addition,

113

World Digital Libraries 1(2): 101–120

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

Freelib: a peer-to-peer-based digital library architecture

we calculate normalized recall, defined as
recall per unit bandwidth (1 message). This is
a measure that we use to combine and display
both recall and bandwidth usage information
on one graph. Our measurement of bandwidth
and response time in terms of number of
application-level messages and hops on the
overlay topology, respectively, helps us avoid
simulating low-level details of the network,
which in turn allows us to simulate larger
networks.

Experiment set-up

The simulator runs as one java process. The
simulation steps are (1) creating and
initializing the nodes; (2) publishing the
metadata and documents at each node;
documents are represented by keywords
drawn from a set of keywords that represent
the primary user community; (3) building the
symphony network according to the
symphony protocol (Manku, Bawa, and
Raghavan 2003); (4) building the access
network; and (5) nodes submitting searches,
collecting results, and calculating various
evaluation measurements. We model arrival of
search queries as a Poisson process with search
queries per minute. For example, assigning a
value of 0.5 means the user submits a search
every two minutes on average. For each search
query, some items are randomly selected for
access/download. Studies (Granka, Joachims,
and Gay 2004; Joachims, Granka, Pang, et al.
2005; Silverstein, Marais, Henzinger, et al.
1999) have shown that users give attention to
the first few (typically 10) top-ranked results.
Our software simulates this behaviour by
giving higher chance for downloading items
that are closer to the top of the ranked list of
results.

In our simulation, we studied both
homogenous networks as well as
heterogeneous networks. Homogenous
networks are those networks in which all
nodes are relatively comparable in terms of

the collection size (number of documents
published by the node) and the network
resources (especially the bandwidth and the
number of simultaneous network connections
allowed). Heterogeneous networks, on the
other hand, are networks that have some
percentage of nodes with more powerful
network resources and/or larger collections.
We call those powerful nodes hub nodes or
simply hubs. Although we studied both types
of networks, we believe that heterogeneous
networks are closer to the real world. We
implemented hub nodes by publishing more
documents for them as well as relaxing the
constraint on the number of friend links they
can have. We performed sensitivity analysis on
these two parameters. For the number of
friend links, we changed the threshold from
twice to five times that of regular nodes. We
found that increasing the threshold beyond
twice that of regular nodes gives slight
increase in performance gain. Thus, we chose
threshold value for hubs to be twice that of a
regular node. Regarding the collection size, we
chose the number of documents of a hub node
to be 5–10 times that of a regular node. We
simulated different communities by having
different sets of keywords for different
communities. When a node is created, a
community is selected for the node, and
documents are published by selecting
keywords from the chosen community. When
a node submits search queries, it uses the
keywords from its community. The important
simulation parameters include the total
number of nodes, the community sizes, and
the percentage of hub nodes. In each run, we
allow all the nodes to submit multiple search
queries and average the results over all the
queries. In these experiments, we compare
Freelib and a network that only uses
symphony, the small-world peer-to-peer
network. The details of the experiments are
given in the following section.

Amrou, Maly, and Zubair114

World Digital Libraries 1(2): 101–120

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

Experiments

We performed experiments for different
networks with up to 4000 nodes, community
sizes ranging from 1% up to 20% of the total
number of nodes, and hub nodes ranging
from 0% to 5% of the nodes. We select graphs
from some of the simulated networks for
presentation in this section and report in the
text about networks with different parameters.
Figure 5 shows recall and normalized recall as
functions of TTL for networks of 4000 and
500 nodes, with community size of 100. In this
figure, we show results for network with 5%
hub nodes as well as networks with no hub
nodes. We can see from the graphs in the
figure that Freelib gives considerable gain in
recall over basic symphony. Freelib reaches
the same levels of recall in up to three hops (in
the graph, the maximum number of hops was
seven) less than symphony. The recall gain for
other community sizes is similar and increases
as the community size decreases compared to
the network size as we shall discuss shortly.
The same conclusion could also be drawn for
the bandwidth usage shown in Figure 6. The
graphs in the figure show bandwidth usage as
number of Freelib messages versus the recall
for different network sizes. The bandwidth
savings increase as the community size
decreases relative to the network size. In this
figure, we show results for networks with 0
hub node. The results for 5% hub nodes are
similar, with slight increase in the bandwidth.
The increase in bandwidth usage for
heterogeneous networks could be explained by
the fact that hub nodes forward search queries
to many more nodes than regular nodes. In
Figure 7, we show response time as hops
versus recall for network sizes of 4000 and 500
nodes and 5% hub nodes. The graph shows
that Freelib enhances query response time by
up to three hops. Figure 8 shows recall and
normalized recall as functions of the network
size for community sizes 100. This figure

shows results for networks with 5% hubs as
well as networks with no hubs. As we can see
in the graphs of this figure, the recall
deteriorates for symphony as the network size
increases, while Freelib maintains the same
high recall despite the increase in network
size. This can be explained by the fact that
Freelib effectively targets the relevant nodes in
the community even if the network size is
large. On the other hand, symphony recall
level degrades as the network size increases
because the relevant nodes are dispersed
among larger number of nodes. Finally, Figure
9 shows recall and normalized recall as a
function of the community size. The
community sizes in this figure are percentage
of the network size. As shown in the figure,
the gain in both the recall and normalized
recall increases as the community size
relatively decreases compared to the network
size. This behaviour is beneficial to Freelib. In
fact, we believe that in the real world,
community sizes will be much smaller
percentage of the whole network than the
figures that we use here, which in turn will
allow Freelib to achieve even higher gains in
performance.

Conclusion and future work

In this paper, we have compared the
performance gains of Freelib over symphony.
The comparison shows that Freelib provides
considerable performance gains over
symphony. The performance gains are
significant in almost all cases, especially when
the community size is relatively small
compared to the network size, which we
believe is the case in real peer-to-peer
networks. Freelib gives better performance in
terms of higher recall, lower bandwidth
consumption, and better response time.

As a future work, we plan to study the
performance of Freelib with even larger peer-
to-peer networks. This might involve the

115

World Digital Libraries 1(2): 101–120

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

Freelib: a peer-to-peer-based digital library architecture

Figure 5 Recall and normalized recall vs. TTL (time to live; nodes: 4000, 500; community: 100; hubs: 0, 5%)

Amrou, Maly, and Zubair116

World Digital Libraries 1(2): 101–120

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

Figure 7 Response time vs. recall (nodes: 500, 4000; community: 100, 500; hubs: 5%)

Figure 6 Bandwidth usage vs. recall (nodes: 500, 4000; community: 100, 500; hubs: 0)

117

World Digital Libraries 1(2): 101–120

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

Freelib: a peer-to-peer-based digital library architecture

Figure 9 Recall and normalized recall as functions of community size (nodes: 4000; hubs: 0, 5%)

Figure 8 Recall and normalized recall vs. network size (community: 100, 500; hubs: 0, 5%)

Amrou, Maly, and Zubair118

World Digital Libraries 1(2): 101–120

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

development of a distributed Freelib
simulator, which would distribute the
simulation load over multiple machines. In
addition, we plan to introduce changes to our
peer ranking techniques and study their effect
on performance. Furthermore, we plan to
study the effect of misleading accesses on the
performance of Freelib. Misleading accesses
are those accesses that seem to be random and

not related to the user interest area. We shall
devise techniques for identifying such
accesses. We shall then introduce this type of
accesses into the simulation and study the
performance of the system. In the light of the
results of such a study, we shall decide if we
need to devise techniques and measures for
eliminating those accesses from the ranking
process.

References

ACM (Association for Computing Machinery). 2008

ACM digital library, home page

Details available at <http://portal.acm.org/dl.cfm/>, last accessed on 10 June 2008

Alexandria. 2008

Alexandria digital library project

Santa Barbara: University of California

Details available at <http://alexandria.sdc.ucsb.edu/>, last accessed on 10 June 2008

Amrou A, Maly K, and Zubair M. 2004

Freelib: a self-sustainable digital library for education community, pp. 15–20

In Proceedings of World Conference on Educational Multimedia, Hypermedia and Telecommunications (ED-MEDIA’04)

[World Conference on Educational Multimedia, Hypermedia and Telecommunications (ED-MEDIA’04), Lugano,

Switzerland]

Amrou A, Maly K, and Zubair M. 2006

Freelib: peer-to-peer-based digital libraries, pp. 9–14

In Proceedings of the IEEE 20th International Conference on Advanced Information Networking and Applications (AINA 2006)

[Proceedings of the IEEE 20th International Conference on Advanced Information Networking and Applications (AINA

2006), Vienna, Austria, 18–20 April 2006]

Amrou A, Maly K, and Zubair M. 2006a

Performance evaluation of Freelib, a P2P-based digital library architecture

In Proceedings of the International Conference on Digital Libraries (ICDL 2006)

[Proceedings of the International Conference on Digital Libraries (ICDL 2006), New Delhi, India, 5–8 December 2006]

Arc. 2008

Arc project home page

Old Dominion University

Details available at <http://arc.cs.odu.edu/>, last accessed on 10 June 2008

Bawa M, Manku G S, and Raghavan P. 2003

SETS: search enhanced by topic segmentation

In Proceedings of the 26 Annual International ACM SIGIR 2003

[Proceedings of the 26 Annual International ACM SIGIR 2003, Toronto, Canada, 28 July to 1 August 2003]

119

World Digital Libraries 1(2): 101–120

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

Freelib: a peer-to-peer-based digital library architecture

Clarke I, Sandberg O, Wiley B, Hong T W. 2000

Freenet: a distributed anonymous information storage and retrieval system, pp. 46–66

In Designing Privacy Enhancing Technologies: Proceedings of International Workshop on Design Issues in Anonymity and

Unobservability

[International Workshop on Design Issues in Anonymity and Unobservability, Berkeley, CA, USA, July 2000]

Daswani N, Garcia-Molina H, and Yang B. 2003

Open problems in data-sharing peer-to-peer systems

In Proceedings of the 9th International Conference on Database Theory (ICDT 2003)

[9th International Conference on Database Theory (ICDT 2003), Siena, Italy, 8–10 January 2003]

Ding H and Solvberg I. 2004

Metadata harvesting framework in P2P-based digital libraries

In Proceedings of the International Conference on Dublin Core and Metadata Application 2004

[International Conference on Dublin Core and Metadata Application 2004, Shanghai, China, 11–14 October 2004]

Granka L A, Joachims T, and Gay G. 2004

Eye-tracking analysis of user behaviour in WWW search

In Proceedings of the 27th Annual International ACM SIGIR Conference on Research and Development in Information Retrieval

[27th Annual International ACM SIGIR Conference on Research and Development in Information Retrieval, University of

Sheffield, UK, 25–29 July 2004]

Joachims T, Granka L, Pang B, Hembrooke H, Gay G. 2005

Accurately interpreting clickthrough data as implicit feedback

In Proceedings of the 28th Annual ACM Conference on Research and Development in Information Retrieval (SIGIR)

[28th Annual ACM Conference on Research and Development in Information Retrieval (SIGIR), Salvador, Brazil, 15–19

August 2005]

Kleinberg J. 2000

The small-world phenomenon: an algorithmic perspective

In Proceedings of the 32nd ACM Symposium on Theory of Computing

[32nd ACM Symposium on Theory of Computing, Portland, OR, USA]

Li M, Lee W, Sivasubramaniam A, Lee D. 2004

A small world overlay network for semantic based search in P2P systems, pp. 71–90

In Proceedings of the Second WWW Workshop on Semantics in Peer-to-Peer and Grid Computing (SemPGRID’04)

[Second WWW Workshop on Semantics in Peer-to-Peer and Grid Computing (SemPGRID’04), New York City, NY, May

2004]

Liu X, Maly K, Zubair M, Nelson M. 2001

Arc – an OAI service provider for digital library federation

D-Lib Magazine 7(4), April 2001

Manku G S, Bawa M, and Raghavan P. 2003

Symphony: distributed hashing in a small world

In Proceedings of the 4th USENIX Symposium on Internet Technologies and Systems

McNab R J, Witten I H, and Boddie S J. 1998

A distributed digital library architecture incorporating different index styles, pp. 36–45

In Proceedings of the IEEE Forum on Research and Technology Advances in Digital Library

[IEEE Forum on Research and Technology Advances in Digital Library, Santa Barbra, CA, April 1998]

Amrou, Maly, and Zubair120

World Digital Libraries 1(2): 101–120

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

NZDL (New Zealand Digital Library). 2008

The New Zealand digital library home page

University of Waikato, New Zealand

Details available at <http://www.nzdl.org/fast-cgi-bin/library?a=p&p=home>, last accessed on 10 May 2008

Silverstein C, Marais H, Henzinger M, Moricz M. 1999

Analysis of a very large AltaVista query log

ACM SIGIR Forum 33 (1)

Walkerdine J and Rayson P. 2004

P2P-4-DL: digital library over peer-to-peer

In Proceedings of the 4th International Conference on Peer-to-Peer Computing (P2P’04)

[4th International Conference on Peer-to-Peer Computing (P2P’04), Zurich, Switzerland, 25–27 August 2004]

Watts D J and Strogatz S H. 1998

Collective dynamics of ‘small-world’ networks

Nature 393: 440–442

Yang B and Gracia-Molina H. 2002

Improving search in peer-to-peer networks

In Proceedings of the 22nd Conference on Distributed Computing Systems (ICDCS’02)

[22nd Conference on Distributed Computing Systems (ICDCS’02), Vienna, Austria, 2–5 July 2002]

