Open Access
Subscription Access
Open Access
Subscription Access
Optical detection of Copper and Cadmium from Aqueous solution using Arylidenemalanonitriles
Subscribe/Renew Journal
We have synthesized new fluorescent organic molecules namely arylidene malanonitriles, through Knovenegal condensation reaction of aryl aldehydes and malanonitrile, which are capable of detectingCd2+and Cu2+ ions in water with sensitivity. The synthesized molecules are characterized through infrared spectrometry, high resolution Mass spectrometry and Nuclear Magnetic Resonance spectroscopy. The fluorescent organic molecules exhibited a fluorescent emission and significant UV-Vis absorption, the intensity of which is increased proportional to the addition of Cd2+ and Cu2+ ions. The lowest detection limit for the Cd2+and Cu2+ were found to be 2.0×10-10 M and 4×10-12 M, respectively.
Keywords
Knovenegal reaction, Malanonitrile, Fluorescent sensor, Photoluminescence, Heavy metal detection.
Subscription
Login to verify subscription
User
Font Size
Information
- Aragay G. Pons J. Merkoci A. Recent trends in macro- micro- and nanomaterial-based tools and strategies for heavy-metal detection.Chemical Reviews. 2011; 111(5): 3433-3458.doi.org/10.1021/cr100383r
- Kar D. Sur P. Mandai S. K. Saha T. Kole R. K. Assessment of heavy metal pollution in surface water. International Journal of Environmental Science and Technology 2008; 5(1):119–124. doi.org/10.1007/BF03326004
- Lee A. Chin J. Park O. K. Chung H. Kim J. W. Yoon S. Y. Park K. A. novel nearinfrared fluorescence chemosensor for copper ion detection using click ligation and energy transfer. Chem. Commun.
- ; 49-5969. https://doi.org/10.1039/C3CC42059K
- Zhou R. Li B. Wu N. Gao G. You J. Lan J. Cyclen-functionalized perylenebisimides as sensitive and selective fluorescent sensors for Pb2+ in aqueous solution. Chem. Commun. 2011; 47(23): 666870. https://doi.org/10.1039/C1CC11200G
- Wang Z. Lee J. H. Lu Y. Highly sensitive ‘‘turn-on’’ fluorescent sensor for Hg2+ in aqueous solution based on structure-switching DNA. Chem. Commun. 2008; 45. 6005–6007.doi.org/10.1039/B812755G
- Barba-Bon A. Costero A. M. Gil S. Parra M. Soto J. MartınezManez R. Sancenon F. A new selective fluorogenic probe for trivalent cations. Chem. Commun. 2012; 48. 3000–3002. doi.org/10.1039/C2CC17184H
- Liang J. Qin, M. Xu R. Gao X. Shen Y. Xu Q. Cao W. Wang W. A genetically encoded copper(I) sensor based on engineered structural distortion of EGFP. Chem. Commun. 2012; 48. 3890– 3892. doi.org/10.1039/C2CC30531C
- Bhatt R. Bhatt R. Padmaja P. DTPA capped gold and silver nanofluids-facile synthesis and their application as chromium sensors. Sensors and Actuators B: Chemical. 2018; 258. 602-611. https://doi.org/10.1016/j.snb.2017.11.154
- Ghaedi M. Jaberi S. Y. S. Hajati S. Montazerozohori M. Zarr M. Asfaram A.Kumawat L. K. Gupta V. K. Preparation of iodide selective carbon paste electrode with modified carbon nanotubes by potentiometric method and effect of CuS-NPs on its response. Electro analysis. 2015; 27(8): 1516–22. doi.org/10.1002/elan.201400686
- Kim H. N. Guo Z. Zhu W. Yoon J. Tian H. Recent progress on polymer-based fluorescent and colorimetric chemosensors. Chem Soc Rev. 2011; 40. 79-93. doi: 10.1039/C0CS00058B
- Li H. Zhang S. J. Gong C. L. Li Y. F. Liang Y. Qi Z. G. Chen S.Highly sensitive and selective fluorescent chemosensor for Ni2+ based on a new poly (arylene ether) with terpyridine substituent groups. Analyst, 2013; 138. 7090-7093. doi.org/10.1039/C3AN01162C
- Singh G. Singh J. Mangat S. S. Singh J. Rani S. (2015) Chalcomer assembly of optical chemosensors for selective Cu2+ and Ni2+ ion recognition. RSC Adv. 2015; 5. 12644-12654. doi.org/10.1039/C4RA14329A
- Kumar M. Bhalla V. Dhir A. Babu J. N. A Ni2+ selective chemosensor based on partial cone conformation of calix[4]arene. Dalton Trans. 2010; 39. 10116-10121.doi.org/10.1039/C0DT00804D
- Kang D. E. Lim C. S. Kim J. Y. Kim E. S. Chun H. J. Cho B. R. Two-Photon probe for Cu2+ with an internal reference: quantitative estimation of Cu2+ in human tissues by two-photon microscopy. Anal. Chem. 2014; 86. 5353-5359. doi.org/10.1021/ac500329k
- Han Z. Yan J. Tang H. Q. He, Y. Zhu Y. Ge Y. Q. Novel simple fluorescent sensor for nickel ions. Tetrahedron Lett, 2017; 58.1254-7. doi.org/10.1016/j.ica.2020.120099
- Huang Z. Yang L. Kong L. Yang J. X. Two-photon fluorescent detection of Cu2+ in live cells through ZnS microhybrid constructed from interfacial coordination bridge of thiocyanate.Dyes Pigments. 2020; 172. 107831.
- DOI: 10.1016/j.dyepig.2019.107831
- Yua T. Wang Y. Zhu Z. Lia Y. Zhang H. Two new phosphorescent Ir(III) complexes as efficient selective sensors for the Cu2+ ion.Dyes Pigments. 2019; 161. 252–60. DOI: 10.1016/j.dyepig.2018.09.075
- Rani R. Paul K. Luxami V. An NBD-based two-in-one Cu2+/Ni2+chemosensor with differential charge transfer processes. New J. Chem. 2016; 40. 2418-2422.https://doi.org/10.1039/C5NJ02648B
- Samanta S. Das S. Biswas P. Synthesis of 3,6-di(pyridin-2- yl)1,2,4,5-tetrazine (pytz) capped silver nanoparticles using 3,6di(pyridin-2-yl)- 1,4-dihydro-1,2,4,5-tetrazineas reducing agent: application in naked eye sensing of Cu2+, Ni2+ and Ag+ ions in aqueous solution and paper platform. Sensor & Actuators B.
- Chem. 2014; 202. 23–30. doi.org/10.1016/j.snb.2014.05.036
- Manna A. K. Mondal J. Rout K. Patra G. K. A benzohydrazidebased two-in-one Ni2+/Cu2+ fluorescent colorimetric chemosensor and its applications in real sample analysis and molecular logic gate. Sensor Actuators B. Chem. 2018; 275. 350– 8. https://doi.org/10.1016/j.snb.2018.08.060
- Dhanushkodi M. Gangatharan G. Kumar V. Balachandar B. K. Sarveswarid S. Gandhie S. Rajesha J. A simple pyrazine based ratiometric fluorescent sensor for Ni2+ ion detection. Dyes Pigments. 2020; 173. 107897. doi.org/10.1016/j.dyepig.2019.107897
- Upadhyay A. Karpagam S. Synthesis and photo physical properties of carbazole based quinoxaline conjugated polymer for fluorescent detection of Ni2+. Dyes Pigments. 2017; 139. 50-64. doi.org/10.1016/j.dyepig.2016.12.019
- Srinivasan K. Subramanian K. Murugan K. Benelli G. Dinakaran K. Fluorescence quenching of MoS2 nanosheets/DNA/silicon dot nanoassembly: effective and rapid detection of Hg2+ ions in aqueous solution. Environmental Science and Pollution Research. 2018; 5 (11): 10567-10576. doi.org/10.1007/s11356-018-1472-x
- Srinivasan K. Subramanian K. Rajasekar A. Murugan K. Benelli G. Dinakaran K. A sensitive optical sensor based on DNA-labelled Si@ SiO2 core-shell nanoparticle for the detection of Hg2+ ions in environmental water samples, Bulletin of Materials Science. 2017; 40 (7): 1455-1462. doi.org/10.1007/s12034-017-1486-x
- Kumar A. Kumar S. Anthroneamine based chromofluorogenic probes for Hg2+ detection in aqueous solution. Tetrahedron Lett. 2012; 53(16): 2030-4. doi.org/10.1016/j.tetlet.2012.01.134
- Kumar A. Vanita V. Walia A. Kumar S. N. Ndimethylaminoethylaminoanthrone -A chromofluorogenic chemosensor for estimation of Cu2+ in aqueous medium and HeLa cells imaging. Sens Actuators B Chem. 2013; 177. 904-12.doi.org/10.1016/j.snb.2012.11.093
- Bertini I. Cavallaro G. McGreevy K. S. Coord. Chem. Rev. 2010; 254. 506-524. https://doi.org/10.1016/j.ccr.2009.07.024
- Wegner S. V. Sun F. Hernandez N. He C. Chem. Commun. Chem. 2011; 47. 2571-2573. https://doi.org/10.1039/C0CC04292G
- Zhao L. Li M. Liu M. Zhang, Y. Wu C. Porphyrin-functionalized porous polysulfone membrane towards an optical sensor membrane for sorption and detection of cadmium(II). Journal of Hazardous Materials. 2016; 301(15): 233-241.doi.org/10.1016/j.jhazmat.2015.08.044
- Shahat A. TulKubra K. Salman Md. S. Hasan Md. N. Hasan Md. M. Novel solid-state sensor material for efficient cadmium(II) detection and capturing from wastewater. Microchem J. 2021; 164.
- doi.org/10.1016/j.microc.2021.105967
- Jeong J. Walker J. M. Wang F. Park J. G. Palmer A. E. Giunta C. Rohrbach M. Steinmann B. Eide D. J. Proc. Natl. Acad. Sci.U.S.A. 2012; 109. E3530. doi.org/10.1073/pnas.1211775110
- Chen W. Gong W. Ye Z. Lin Y. Ning G. Dalton Trans. 2013; 42.10093. https://doi.org/10.1039/C3DT50832C
- Wang H. Li Y. Xu S. Li Y. Zhou C. Fei X. Sun L. Zhang C. Li Y. Yang Q. Xu X. Org. Biomol. Chem. 2011; 9. 2850. https://doi.org/10.1039/C0OB01032D 35. Helal A. Kim H. S. Yamani Z. H. Nasiruzzaman Shaikh M.
- “Fluorescein-N-Methylimidazole Conjugate as Cu2+ Sensor in Mixed Aqueous Media Through Electron Transfer.” J. Fluorescence. 2016; 26 (1): 1–9. https://doi.org/10.1007/s10895015-1713-z
- Chandra R. Ghorai A. Patra G. K. “A simple benzildihy- drazone derived colorimetric and fluorescent ‘on–off-on’ sensor for sequential detection of copper (II) and cyanide ions in aqueous
- solution.” Sensors and Actuators B: Chemical. 2018; 255. 701– 711. https://doi.org/10.1016/j.snb.2017.08.067
- Huang Y. Li C. F. Shi W. J. Tan H. Y. He Z. Z. Zheng L. Liu F. Yan J. W. A near-infrared BODIPY-based fluorescent probe for ratiometric and discriminative detection of Hg2+ and Cu2+ ions in living cells. Talanta. 2019; 198. 390–397. https://doi.org/10.1016/j.talanta.2019.02.012
- Tan Q. Zhang R. Zhang G. Liu X. Qu F. Lu L. Embedding carbon dots and gold nanoclusters in metal-organic frameworks for ratiometric fluorescence detection of Cu2+. Analytical and Bioanalytical Chemistry. 2020; 412. 1317–1324.https://doi.org/10.1007/s00216-019-02353-5
- Bekhradnia A. Domehri E. Khosravi M. “Novel coumarin-based fluorescent probe for selective detection of Cu(II).”SpectrochimicaActa Part A: Molecular and Biomolecular Spectroscopy. 2016; 152. 18–22.
- https://doi.org/10.1016/j.saa.2015.07.029
- Zheng X. Wang S. Wang H. Zhang R. Liu, J. Zhao, B. Novel pyrazoline-based selective fluorescent probe for the detection of hydrazine. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy. 2015; 138(5): 247-251.https://doi.org/10.1016/j.saa.2014.11.045
- Sun M. Guo J. Yang Q. Xiao N. Li Y. A new fluorescent and colorimetric sensor for hydrazine and its application in biological systems. Anal. Methods. 2018; 10. 3475-3480.https://doi.org/10.1039/C8AY00965A
- Lin Y. Peng Y. S. Su W. Tu C. H. Sun C. H. Chow T. J. A highly selective colorimetric and turn-on fluorescent probe for cyanide anion. J.Chowac. Tetrahedron. 2012; 68(11): 2523-2526.
- https://doi.org/10.1016/j.tet.2012.01.026
- Adriana D.S. Menger S. R. Vanderlei G.Machado. Malononitrile– derivative chromogenic devices for the detection of cyanide in water. Journal of Molecular Liquids. 2016; 223. 811-818. https://doi.org/10.1016/j.molliq.2016.08.093
- Ivan N. Bardasov Anastasiya U. Alekseeva Nykolay P. Dianov Oleg V. Ershov Novel fluorescent sensor for silver (I) based on the cinnamylidene derivatives of malononitrile trimer. J. of Mole Str.
- ; 1222. 128935. https://doi.org/10.1016/j.molstruc.2020.128935
- Huo B. Du M. Gong A. Li M. Fang L. Shen A. Lai Y. Bai X. Yang Y. A novel intramolecular cyclization-induced fluorescent “turnon” probe for detection of Pd2+ based on Tsuji-Trost reaction. Anal. Methods. 2018; 10. 3475-3480. https://doi.org/10.1039/C8AY00965A
- Ren Z. Cao W. Tong W. The knoevenagel condensation reaction of aromatic aldehydes with malononitrile by grinding in the absence of solvents and catalysts. Synthetic Communications.
- ; 32(22): 3475–3479. https://doi.org/10.1081/SCC-120014780
- Zhao L. Li M. Liu M. Zhang Y. Wu C. Porphyrin-functionalized porous polysulfone membrane towards an optical sensor membrane for sorption and detection of cadmium(II)Journal of
- Hazardous Materials. 2016; 301(15): 233-241. https://doi.org/10.1016/j.jhazmat.2015.08.044
Abstract Views: 111
PDF Views: 0