Open Access Open Access  Restricted Access Subscription Access
Open Access Open Access Open Access  Restricted Access Restricted Access Subscription Access

Electroorganic Synthesis of Copper and Zinc Complexes with Novel Ligand Oxalic Acid


Affiliations
1 St. Xavier’s College, Department of Chemistry, Ranchi ., India
2 Redt. Professor of PG Department of Chemistry, Ranchi University, Ranchi., India
3 Redt. Associate Professor, R.L.S.Y College, Ranchi University, Ranchi., India
     

   Subscribe/Renew Journal


A convenient electroorganic synthesis of divalent metal complexes of empirical formulation [ML2] (M (II) = Cu and Zn; L= oxalic acid) were synthesized at sacrificial metal electrode anode. The metal, as the anode in an undivided cell, is oxidized in the presence of the parent compound of the ligand (HL) in an organic solvent mixture. Gram quantities of complex can be produced in a few hours. Complexes were characterized by elemental analysis, Infrared spectral data, Atomic Absorption spectroscopy and thermal spectral data. The geometrical structure of the synthesized complexes has been identified.

Keywords

Oxalic acid, Electroorganic, Atomic absorption spectroscopy, Infrared spectra, Sacrificial electrode.
Subscription Login to verify subscription
User
Notifications
Font Size


  • Patange N V Pardeshi K R and Arbad RB. Transition metal complexes with oxygen donor ligands: A synthesis, spectral, thermal and antimicrobial study. Journal of the Serbian Chemical Society. 2008 June 6th; 73(11) :1073-1082. (https://doi.org/10.2298/JSC0811073P)
  • Mendiguchia SB Aiello I and Crispine A. Zn(ii) and Cu(ii) complexes containing bioactive O,O-chelated ligands: homoleptic and heteroleptic metal-based biomolecules† Dalton Transaction., 2015 Apr 9.1 (44), 9321-9334.(https://doi.org/10.1039/C5DT00817D)
  • Yang H T Han F Yand SNF. Synthesis and Crystal Structure of 3D-Superamolecular Zinc Complex Derived from Pyridine-2,5dicarboxylate and Oxalate Asian Journal of Chemistry. 2013 sept 9; 25 (16): 8946-8948 (http://dx.doi.org/10.14233/ajchem.2013.14925)
  • Sneha Kumari Agarwal, M. Alam. Synthesis of Complexes of Copper Electrolytically. Asian J. Research Chem. 8(10): October 2015; Page 625-629. doi: 10.5958/0974-4150.2015.00099.1
  • Rajeev Kumar, Sivadhar Sharma. Synthesis and Characterisation of Copper (II) Complexes Containing Ligand: Biological Application. Asian J. Research Chem. 2020; 13(5):341-351. doi: 10.5958/0974-4150.2020.00065.6
  • Reena Bhadani. Electrochemical polymerization of pyrrole in aqueous solution of oxalic acid. Asian J. Research Chem. 6(1): January 2013; Page 92-94.
  • Syed Tasleem Hussain, Gul Abad Khan, Muhammad Shabeer. Solubility of Oxalic Acid. Asian J. Research Chem. 5(11): Nov., 2012; Page 1323-1330.
  • Farooque Basheer Ansari. A Solution Phase Study of Metal Ligand Interaction of Ni (II), Co (II) and Mg (II) with Glycine and Dicarboxylic Acids: Potentiometric Study. Asian J. Research Chem. 4(5): May, 2011; Page 697-699.
  • Mi L F Wu JS and Minglin F. Adsorption of copper(II) ions by a chitosan–oxalate complex biosorbent International journal of biological macromolecules. 2014 Jan; 72 (1):136-144 (https://doi.org/10.1016/j.ijbiomac.2014.08.006)
  • Ahmad T Ganguly A Ahmed J Ganguli KA. , Alhartomy AO. Nanorods of transition metal oxalates: A versatile route to the oxide nanoparticles. Arabian Journal of Chemistry. 2011 Apr; 4(2):125-134 (https://doi.org/10.1016/j.arabjc.2010.06.041)
  • Reena Bhadani. Electrochemical Synthesis of Polyacrylamide Hydrogels - Metalnanoparticles Composites. Asian J. Research Chem. 7(6): June 2014; Page 593-595.
  • B. M. Rajeshwari, PatilS. J. Heavy Metals Status in Soils of Ballari District using Atomic Absorption Spectroscopy (AAS).Asian J. Research Chem. 2018; 11(4):701-704. doi: 10.5958/09744150.2018.00123.2
  • T. Ajantha Aekis, B. Indirani. Comparison of heavy metalconcentration in various Laterite profiles in Kanyakumari district. Asian J. Research Chem. 2018; 11(2):244-246. doi: 10.5958/09744150.2018.00046.9
  • Frost L.R, Yang J, Ding Z. Raman spectroscopy of natural oxalates –implications for the evidence of life on Mars. Chinese science bulletin. 2003. 48(17) :1844-1852 (https://doi.org/10.1360/03wd0145)
  • Nevin A Melia LJ Osticiole L Gauter G colomerni P M. The identification of copper oxalates in a 16th century Cypriot exterior wall painting using micro FTIR, micro Raman spectroscopy and Gas Chromatography-Mass Spectrometry. Journal of Cultural Heritage. 2008 Apr.9 (2); 154161(https://doi.org/10.1016/j.culher.2007.10.002)
  • Nakamoto K. Infrared and Raman spectra of inorganic and coordination, organometallic and bioinorganic chemistry. John Wiley and Sons. New Delhi. India 2008. (https://doi.org/10.1002/aoc.1655)
  • Silverstein M. R. and Webstert X. F. Spectrometric identification of organic compound. . John Wiley and Sons. New Delhi. India. 2006, ISBN 9780471429135,0471429139
  • Hashemaian S al Ali N and Rozita V. Synthesis and Characterization of Mixed Ligand Complexes of Cu(II)-OxalateAmino Acids (Aspartic acid and Cysteine). Asian journal of chemistry. 2013 Nov 30; 25(5), 2923-2924 (https://doi.org/10.14233/ajchem.2013.13409)
  • Edwards M G H, Farewell DW Rose SJ and smith DN. Vibrational spectra of copper (II) oxalate dihydrate, CuC2O4·2H20, and dipotassium bis-oxalato copper (II) tetrahydrate, K2Cu(C204)2·4H20 Journal of molecular structure. 249 (1991).233 -243 (https://doi.org/10.1016/0022-2860(91)85070-J)
  • Mahmood AA Abdulquader M Mohammed R A S Jafaar MM. Studying of transition metal complexes containing oxalate ion with antibacterial activity. International Journal of Pharmacy and Pharmaceutical Sciences. 2010 Sept; 6 (9): 855-866 (https://www.ijser.org/researchpaper/Studying-of-transition-metalcomplexes-containing-oxalate-ion-with-antibacterial-activity.pdf)
  • Noorussaba, Afaq Ahmad. Synthesis, Infrared spectroscopic and Thermal studies of [0.7(Cu2CdI4):0.3(AgIx:CuI(1-x))] of fast-ion conductor (x = 0.2, 0.4, 0.6 and 0.8 mol. wt. %). Asian J. Research Chem 8(2): February 2015; Page 131-140. doi: 10.5958/09744150.2015.00024.3
  • Pavia L D Lampman MG Kriz GS Vyvyan AJ. Introduction to spectroscopy. Australia, Cengage Learning. New Delhi, India, 2015. ISBN 0721671195, 9780721671192,
  • Sachinath. M. Fundamentals of optical sprctroscopic and X-ray minerology. New Age International (P) Limited. New Delhi. India. 1996 ISBN-81-224-0982-2.
  • shamsipur M, Roushain M, Pourmortazavi M .S. Electrochemical synthesis and characterization of zinc oxalate nanoparticles. Material Research Bulletin. 2012 Mar; 48 (3):1275-1280 (doi: 10.1016/j.materresbull.2012.12.032)
  • Birzescu M Niculescu M Raluca D Budrugea P. and Segal E. Copper(II) oxalate obtained through the reaction of 1,2-ethanediol with Cu(NO3)2·3H2O. Journal of Thermal Analysis and Calorimetry. 2008 Aug12; 94 (1), 297-303 (https://doi.org/10.1007/s10973-007-8599-1)
  • Christensen N Lebech B Amderson NH. and Grievel JC. The crystal structure of paramagnetic copper(ii) oxalate (CuC2O4): formation and thermal decomposition of randomly stacked anisotropic nano-sized crystallites. Dalton Transaction. 2014 Sept 9; 44 (1): 16754-16768 (https://doi.org/10.1039/C4DT01689K)
  • Zaware KS. and Jadhav SS. Kinetics And Mechanism Of Thermal Decomposition Of Binary Mixture Of Ferrous Oxalate And Copper Oxalate In The (1:2) Mole Ratio. International Journal of Engineering Research and Technology. 2012 Dec; 1 (10): 1-11 (https://www.ijert.org/research/kinetics-and-mechanism-ofthermal-decomposition-of-binary-mixture-of-ferrous-oxalate-andcopper-oxalate-in-the-12-mole-ratio-IJERTV1IS10315.pdf)
  • Baran EJ. Review: Natural oxalates and their analogous synthetic complexes. Journal of Coordination Chemistry, 2014 Mar 19; 67 (23-24) :3734 -3768 doi: 10.1080/00958972.2014.937340
  • Prabhumirashi SL and Khojie JK. TGA and DTA studies on en and tmn complexes of Cu (II) chloride, nitrate, sulphate, acetate and oxalate. Thermochimica Acta 2002 Feb7;383(1-2), 109-118
  • doi:10.1016/S0040-6031(01)00683-9
  • Matecka B. Ciesla ED. Matecki A. Mechanism and kinetics of thermal decomposition of zinc oxalate. Thermochimica Acta. 2004 Dec 423 (1-2), 13 -18 (https://doi.org/10.1016/j.tca.2004.04.012)
  • Taochung Y Ba Abbad MM Mohammad AW Benamor A. Functionalization of zinc oxide (ZnO) nanoparticles and its effects on polysulfone-ZnO membranes. Desalination and Water Treatment. 2015 Jan 31 57(17),7801-7811 (https://doi.org/10.1080/19443994.2015.1067168)

Abstract Views: 63

PDF Views: 0




  • Electroorganic Synthesis of Copper and Zinc Complexes with Novel Ligand Oxalic Acid

Abstract Views: 63  |  PDF Views: 0

Authors

Shreya Gorai
St. Xavier’s College, Department of Chemistry, Ranchi ., India
M. Alam
Redt. Professor of PG Department of Chemistry, Ranchi University, Ranchi., India
B. H Gorai
Redt. Associate Professor, R.L.S.Y College, Ranchi University, Ranchi., India

Abstract


A convenient electroorganic synthesis of divalent metal complexes of empirical formulation [ML2] (M (II) = Cu and Zn; L= oxalic acid) were synthesized at sacrificial metal electrode anode. The metal, as the anode in an undivided cell, is oxidized in the presence of the parent compound of the ligand (HL) in an organic solvent mixture. Gram quantities of complex can be produced in a few hours. Complexes were characterized by elemental analysis, Infrared spectral data, Atomic Absorption spectroscopy and thermal spectral data. The geometrical structure of the synthesized complexes has been identified.

Keywords


Oxalic acid, Electroorganic, Atomic absorption spectroscopy, Infrared spectra, Sacrificial electrode.

References