Open Access Open Access  Restricted Access Subscription Access
Open Access Open Access Open Access  Restricted Access Restricted Access Subscription Access

Structural and Binding energy of Aun+1 and PtAun (n =1-9) Clusters


Affiliations
1 Ecole Normale Supérieure de Ouargla, 30000 Ouargla, Algeria ., India
2 Ecole Normale Supérieure de Ouargla, 30000 Ouargla, Algeria., India
3 Larbi Tebessi University, Tebessa, Laboratoire de Physique Appliquée et Théorique, Route de Constantine 12002 Tebessa, Algeria., India
4 Laboratoire de Développement des Energies Nouvelles et Renouvelables dans les Zones Arides et Sahariennes, Faculté des Mathématiques et des Sciences de la Matière, Université Kasdi Merbah Ouargla, Ouargla 30000., India
5 aboratory of Materials Technology, Department of Materials Science, University of Science and Technology Houari Boumediene, Bp 32 El Alia, Bab Ezzouar, 16111, Algeria., India
6 Radiation, Plasmas and Surface Physics Laboratory, Physics Department, Ouargla University, Ouargla 30000, Algeria., India
     

   Subscribe/Renew Journal


In the current paper, we present a systematic calculation based on the Density functional theory (DFT), which aims to highlight the potential effects of doping platinum Pt clusters and the new electronic and light structural characteristics of platinum-infused gold clusters Aun (n= 1-9), so that less energy clusters are selected from the rest of the isomers per cluster size. The most stable structures with the lowest 3D structures starting from n=6. The average length of the bonds between the atoms of each cluster and the binding energy of these clusters is calculated relative to their size. Structural characteristics were studied, discussed and compared with all calculated properties by Gradient Density Approximation (GGA) with the Local Density Approximation (LDA), also highlighted the intensity of calculated cases and comparison of Au2 cluster with PtAu that the grafting of Aun clusters platinum Pt, makes them have characteristics that distinguish them to be qualified in their use of chemical stimulation

Keywords

Density functional theory, PtAun and Aun clusters, binding energy, Stability structure, chemical catalysis.
Subscription Login to verify subscription
User
Notifications
Font Size


  • Wenqiang Ma, Fuyi Chen, Electronic, magnetic and optical properties of Cu, Ag, Au-doped Si clusters, J Mol Model 2013 Oct;19(10):4555-60. doi: 10.1007/s00894-013-1961-2
  • Michael Martins and Wilfried Wurth, Magnetic properties of supported metal atoms and clusters, Condensed Matter, 2016 J.Phys.: Condens. Matter 28; 503002. doi.org/10.1088/09538984/28/50/503002 .
  • Hongfei Li, Huiyan Zhao, Zun Xie, Chenggang Li, Chunyuan bai, Stability and catalytic activity of Au30M12 (M = Au, Ag, Cu, Pt) icosahedral clusters, Volume 763, 16 January 2021, 138186, Chemical Physics Letters, doi.org/10.1016/j.cplett.2020.138186
  • Yimin Li, Jack Hung-Chang Liu, Cole A. Witham, A Pt-ClusterBased Heterogeneous Catalyst for Homogeneous Catalytic Reactions: X-ray Absorption Spectroscopy and Reaction Kinetic Studies of Their Activity and Stability against Leaching, J. Am. Chem. Soc. 2011, 133, 34, 13527–13533, doi.org/10.1021/ja204191t
  • Mahtout S, Tariket Y, Electronic and magnetic properties of CrGen (15 ≤ n ≤ 29) clusters: a DFT study. Chem Phys, 2016, 472,270
  • Xue-Qing Gong, Annabella Selloni, Olga Dulub, Peter Jacobson, Ulrike Diebold, Small Au and Pt Clusters at the Anatase TiO2(101) Surface: Behavior at Terraces, Steps, and Surface Oxygen Vacancies, J. Am. Chem. Soc. 2008, 130, 1, 370–381, doi.org/10.1021/ja0773148
  • Giulia Rossi and Riccardo Ferrando, Global optimization of bimetallic cluster structures. II. Size-matched Ag-Pd, Ag-Au, and Pd-Pt systems, J. Chem. Phys. 122, 194309 (2005), doi.org/10.1063/1.1898224
  • J. Madhusudhanan and K. Sathishkumar, Gold Nanoparticle for Protein Delivery, Research J. Engineering and Tech. 4(4): Oct.Dec., 2013 DOI: Not Available
  • Chitneni Vyshuk Rao, Manimaran V, Damodharan N, Review on Methods, Applications and Role of gold nano particles in Cancer Therapy, Research J. Pharm. and Tech. 2020; 13(8):3963-3968.
  • doi.org/ 10.5958/0974-360X.2020.00701.5
  • Anbarasu Sivaraj, Vanaja Kumar, Revathy Kalyanasundaram, Govindaraju Kasivelu, Biogenic production of Gold nanoparticles using Lactic acid bacteria and their Anti-mycobacterial activity Research J. Pharm. and Tech 2020; 13(9):4391-4394. doi: 10.5958/0974-360X.2020.00776.3
  • Karunakaran Sulochana Meena, Thyagarajan Venkataraman, Singaravel Ganesan, Prakasa Rao Aruna, Gold–Nanoparticles A Novel Nano-Photosensitizer for Photodynamic Therapy, Asian J.
  • Research Chem. 4(1): January 2011; Page 58-63
  • Ketan B. Patil, Narendra B. Patil, Sushmita V. Patil, Vaishnavi K. Patil, Pratik C. Shirsath, Metal based Nanomaterial’s (Silver and Gold): Synthesis and Biomedical application, Asian J. Pharm. Tech. 2020; 10(2):97-106. doi: 10.5958/2231-5713.2020.00018.5
  • G. Sivasankari, S. Boobalan, D. Deepa, Dopamine sensor by Gold Nanoparticles Absorbed Redox behaving metal Complex, Asian J. Pharm. Tech. 2018; 8 (2):83-87. doi: 10.5958/22315713.2018.00013.2
  • O.P. Yadav, V.K. Garg, Y.K. Yadav, Eleni Daoutsali, Study on Catalytic Oxidation of Carbonmonoxide over Nano-Size Platinum + Alumina Composite, Asian J. Research Chem. 4(6): June, 2011; Page 1005-1008.
  • Dushyant Gangwar, Rajdeep Malik, Jasvinder Kaur, Electrochemical Behaviour of 4-Aminoantipyrine at a Platinum Electrode: Kinetic Study, Research Journal of Pharmacy and Technology. 2022; 15(2):551-4. doi: 10.52711/0974360X.2022.00089
  • R.B. Saudagar, Kanchan T. Mandlik, A Review on Gold Nanoparticles, Asian J. Pharm. Res. 6(1): January -March, 2016; Page 45-48. doi: 10.5958/2231-5691.2016.00008.3
  • U.G. Gabriel, A.C. Reber, S.N. Khanna, New. J. Chem. 37, 3928 (2013).
  • J.M. Soler, E. Artacho, J.D. Gale, A. Garcı´a, J. Junquera, P Ordejo´n, D. Sa´nchez-Portal, 2002 J. Phys.: Condens. Matter 14 2745, doi.org/10.1088/0953-8984/14/11/302
  • Troullier N, Martins JL, Efficient pseudopotentials for plane-wave calculations. 1991 Apr 15, Phys Rev B Condens Matter;43(11):8861-8869. doi: 10.1103/physrevb.43.8861.
  • Chang Q. Sun, Y. Wang, B. K. Tay, S. Li, H. Huang, and Y. B. Zhang, Correlation between the melting point of a nanosolid and the cohesive energy of a surface atom, 2002, J. Phys. Chem. B
  • , 106, 41, 10701–10705, doi.org/10.1021/jp025868l
  • D. M. Ceperley and B. J. Alder, Ground State of the Electron Gas by a Stochastic Method, 1980 Phys. Rev. Lett. 45, 566, doi.org/10.1103/PhysRevLett.45.566.
  • Kokalj A, A New Program for Displaying Crystalline Structures and Electron Densities, J. Mol. Graphics Modelling. 1999, 17:176- 179. doi not Available.
  • E. S. Kryachko, F. Remacle, Complexes of DNA Bases and Gold Clusters Au3 and Au4 Involving Nonconventional N−H···Au Hydrogen Bonding, Nano Lett. 2005, 5, 4, 735–739, doi.org/10.1021/nl050194m.
  • Wertheim, G.K. Electronic structure of metal clusters. 1989, Z Phys D - Atoms, Molecules and Clusters. 12, 319–326, doi.org/10.1007/BF01426965.

Abstract Views: 75

PDF Views: 0




  • Structural and Binding energy of Aun+1 and PtAun (n =1-9) Clusters

Abstract Views: 75  |  PDF Views: 0

Authors

Yamina Benkrima
Ecole Normale Supérieure de Ouargla, 30000 Ouargla, Algeria ., India
Abdelkader Souigat
Ecole Normale Supérieure de Ouargla, 30000 Ouargla, Algeria., India
Yassine Chaouche
Larbi Tebessi University, Tebessa, Laboratoire de Physique Appliquée et Théorique, Route de Constantine 12002 Tebessa, Algeria., India
Mohammed Elbar Soudani
Laboratoire de Développement des Energies Nouvelles et Renouvelables dans les Zones Arides et Sahariennes, Faculté des Mathématiques et des Sciences de la Matière, Université Kasdi Merbah Ouargla, Ouargla 30000., India
Mohammed Seyf Eddine Bougoffa
aboratory of Materials Technology, Department of Materials Science, University of Science and Technology Houari Boumediene, Bp 32 El Alia, Bab Ezzouar, 16111, Algeria., India
Naouia Mahdadi
Radiation, Plasmas and Surface Physics Laboratory, Physics Department, Ouargla University, Ouargla 30000, Algeria., India

Abstract


In the current paper, we present a systematic calculation based on the Density functional theory (DFT), which aims to highlight the potential effects of doping platinum Pt clusters and the new electronic and light structural characteristics of platinum-infused gold clusters Aun (n= 1-9), so that less energy clusters are selected from the rest of the isomers per cluster size. The most stable structures with the lowest 3D structures starting from n=6. The average length of the bonds between the atoms of each cluster and the binding energy of these clusters is calculated relative to their size. Structural characteristics were studied, discussed and compared with all calculated properties by Gradient Density Approximation (GGA) with the Local Density Approximation (LDA), also highlighted the intensity of calculated cases and comparison of Au2 cluster with PtAu that the grafting of Aun clusters platinum Pt, makes them have characteristics that distinguish them to be qualified in their use of chemical stimulation

Keywords


Density functional theory, PtAun and Aun clusters, binding energy, Stability structure, chemical catalysis.

References