Open Access Open Access  Restricted Access Subscription Access
Open Access Open Access Open Access  Restricted Access Restricted Access Subscription Access

Predictive QSAR models for the toxicity of Phenols


Affiliations
1 Materials and Environment Analytical Sciences Laboratory, Larbi Ben M'hidi University - Oum El Bouaghi B.P. 358 route de Constantine, 04000 Oum el Bouaghi, Algeria ., India
     

   Subscribe/Renew Journal


Toxicity data for the 50% growth inhibitory concentration against Tetrahymena pyriformis pCIC50 = -logCIC50 for 85 phenols substituted were obtained experimentally. Log (CIC50)-1 along with the hydrophobicity, the logarithm of the 1-octanol/water partition coefficient (log Kow), and R2u (GETAWAY descriptors). The entire data set was randomly split into a training set (60chemicals) used to establish the QSAR model, and a test set (25 chemicals) for statistical external validation The descriptors models were selected from an extensive set of several descriptors (topological, geometrical and quantum). Quantitative structure-activity/property (QSAR / The values of the statistical parameters obtained from the multiple linear regression analysis (R²=95.5%, Q²=95.01%, S=0.157, F=604.34, P=0, SDEC=0.153, SDEP=0.161, Q²ext=95.96%, SDEPext=0.153) testify to the good fit of the model.

Keywords

Getaway descriptors, QSAR, hydrophobicity, external validation, Toxicity topological
Subscription Login to verify subscription
User
Notifications
Font Size



  • Predictive QSAR models for the toxicity of Phenols

Abstract Views: 460  |  PDF Views: 0

Authors

Auteur Hamada Hakim
Materials and Environment Analytical Sciences Laboratory, Larbi Ben M'hidi University - Oum El Bouaghi B.P. 358 route de Constantine, 04000 Oum el Bouaghi, Algeria ., India

Abstract


Toxicity data for the 50% growth inhibitory concentration against Tetrahymena pyriformis pCIC50 = -logCIC50 for 85 phenols substituted were obtained experimentally. Log (CIC50)-1 along with the hydrophobicity, the logarithm of the 1-octanol/water partition coefficient (log Kow), and R2u (GETAWAY descriptors). The entire data set was randomly split into a training set (60chemicals) used to establish the QSAR model, and a test set (25 chemicals) for statistical external validation The descriptors models were selected from an extensive set of several descriptors (topological, geometrical and quantum). Quantitative structure-activity/property (QSAR / The values of the statistical parameters obtained from the multiple linear regression analysis (R²=95.5%, Q²=95.01%, S=0.157, F=604.34, P=0, SDEC=0.153, SDEP=0.161, Q²ext=95.96%, SDEPext=0.153) testify to the good fit of the model.

Keywords


Getaway descriptors, QSAR, hydrophobicity, external validation, Toxicity topological

References