Open Access Open Access  Restricted Access Subscription Access
Open Access Open Access Open Access  Restricted Access Restricted Access Subscription Access

Properties of Molecular Materials: The Effect of the N-H/B Substitution on the Electronic Structure of 2-hydroxybenzaldimine


Affiliations
1 Organic Chemistry Division, Department of Chemistry, Al-Hussein Bin Talal University, Ma’an, Jordan
     

   Subscribe/Renew Journal


2-Hydroxybenzaldimine belongs to the Schiff bases which are important class of the modern molecular technology. Effect of the N-H/B substitution on the electronic structure of the title compound was inspired by the pioneering work of Hargis and co-workers (J. Am. Chem. Soc., 2008, 130 (51), 17471). The DFT/B3LYP investigation included analyzing the structures, the tautomerism energies, the intramolecular charge transfer processes, the bond critical point electron densities, the infrared stretching frequencies, and the frontier orbitals. The results confirm and illustrate that boron is a powerful electron withdrawing group that can force the structure to loosing the aromatic stabilization energy and to forming the keto-tautomer as the more stable skeleton. In addition to that, this substitution has drastic consequences on the various electronic structure aspects. Among them, it can lower the molecular band gap considerably and therefore can be used as the corner stone in designing new molecular electronics and small-molecule dyes. In this regard, we report here a small conjugated -system of a band gap equivalent to 2.42eV (TD-DFT), which is attributed to the keto-tautomer of the -BN2C2 derivative. These results can be considered as a new addition to the boron chemistry.

Keywords

Schiff Base, B3LYP, Boron, NBO, AIM, Band Gap
Subscription Login to verify subscription
User
Notifications
Font Size


  • D. Voet, J. Voet, Biochemistry, J.Wiley, New York 1994, pp. 451, 486, 621, 729.
  • J. Costamagna, J. Vargas, R. Latorre, A. Alvarado, G. Mena, Coord. Chem. Rev., 119 (1992), 67.
  • F. Ledl, E. Schleicher, Angew. Chem., Int. Ed. Engl., 29 (1990), 565.
  • T. McKee, J. McKee, Biochemistry, Wm. C. Brown Publishers, Dubuque, 1996, pp. 449.
  • V. Jaku, N. Rietbrock, Chem. Listy, 93 (1999), 375.
  • Z. H. A. El-Wahab, M. R. El-Sarrag, Spectrochim. Acta Q-M, 60 (2004), 271.
  • M. M. Mashaly, Z. H. Abd-Elwahab, A. A. Faheim, Syn. React. Inorg. Met., 34 (2004), 233.
  • I. Sakiyan, E. Logoglu, S. Arslan, N. Sari, N. Sakiyan, Biometals, 17 (2004), 115.
  • M. Yildiz, Z. Kiliç, T. Höhelek, J. Mol. Struct., 441 (1998), 1. 10. H. Temel, T. Taskin, M. Sekerci, Russ. J. Inorg. Chem., 49 (2004), 347.
  • S. B. Desai, P. B. Desai, K. R. Desai, Heterocycl. Commun., 7 (2001), 83.
  • T. A. K. Al-Allaf, W. J. Rashan, A. Stelzner, D. R. Powell, Appl. Organomet. Chem., 17 (2003), 891.
  • D. Nedeltcheva, L. Antonov, A. Lycka, B. Damyanova, S. Popov, Curr. Org. Chem., 13 (2009), 217.
  • A. Filarowski, A. Koll, L. Sobczyk, Curr. Org. Chem., 13 (2009), 172.
  • I. Sheikhshoaie, W.M.F. Fabian, Curr. Org. Chem., 13 (2009), 149.
  • P. Przybylski, A. Huczynski, K. Pyta, B. Brzezinski, F. Bart, Curr. Org. Chem., 13 (2009), 124.
  • B. J. Ferringa, W.F. Jager, B. deLange, Tetrahedron, 49 (1993), 8267.
  • E. Hadjoudis, M. Vittorakis, I. Moustakali-Mavridis, Tetrahedron, 43 (1987), 1345.
  • F. Chang, D.H. Zhang, G.Y. Xu, H.J. Yang, J.T. Li, H.B. Song, W.H. Sun, J. Organomet. Chem., 689 (2004), 936.
  • T. Inabe, New J. Chem., 15 (1991), 129.
  • J.C. Hargis, F.A. Evangelista, J.B. Ingels, H.F. Schaefer III, J. Am. Chem. Soc., 130 (2008), 17471.
  • A.D. Becke, J. Chem. Phys., 98 (1993), 5642.
  • C. Lee, W. Yang, R.G. Parr, Phys. Rev. B, 37 (1988), 785.
  • NBO Version 3.1, E.D. Glendening, A.E. Reed, J.E. Carpenter, F. Weinhold.
  • A.E. Reed, A. Curtiss, F. Weinhold, Chem. Rev., 88 (1988), 899.
  • 26. J. Cioslowski, A. Nanayakkara, M. Challacombe, Chem. Phys. Lett., 203 (1993), 137. 27.
  • J. Cioslowski, Chem. Phys. Lett., 194 (1992), 73.
  • J. Cioslowski, Chem. Phys. Lett., 219 (1992), 151.
  • Gaussian 03, Revision E01, M.J. Frisch, G.W. Trucks, H.B. Schlegel, G.E. Scuseria, M.A. Robb, J.R. Cheeseman, J.A. Montgomery, Jr.,T. Vreven, K.N. Kudin, J.C. Burant, J.M. Millam, S.S. Iyengar, J. Tomasi, V. Barone, B. Mennucci, M. Cossi, G. Scalmani, N. Rega, G.A. Petersson, H. Nakatsuji, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, M. Klene, X. Li, J.E. Knox, H.P. Hratchian, J.B. Cross, C. Adamo, J. Jaramillo, R. Gomperts, R.E. Stratmann, O. Yazyev, A.J. Austin, R. Cammi, C. Pomelli, J.W. Ochterski, P.Y. Ayala, K. Morokuma, G.A. Voth, P. Salvador, J.J. Dannenberg, V.G. Zakrzewski, S. Dapprich, A. D. Daniels, M.C. Strain, O. Farkas, D.K. Malick, A.D. Rabuck, K. Raghavachari, J.B. Foresman, J.V. Ortiz, Q. Cui, A.G. Baboul, S. Clifford, J. Cioslowski, B.B. Stefanov, G. Liu, A. Liashenko, P. Piskorz, I. Komaromi, R.L. Martin, D.J. Fox, T. Keith, M.A. Al-Laham, C.Y. Peng, A. Nanayakkara, M. Challacombe, P.M.W. Gill, B. Johnson, W. Chen, M.W. Wong, C. Gonzalez, J.A. Pople, Gaussian, Inc., Pittsburgh PA, 2003.
  • C.C. J. Roothan, Rev. Mod. Phys., 23 (1951), 69.
  • J.A. Pople, R.K. Nesbet, J. Chem. Phys., 22 (1954), 571.
  • R. McWeeny, G. Dierksen, J. Chem. Phys., 49 (1968), 4852.
  • M. Head-Gordon, J. A. Pople, M. J. Frisch, Chem. Phys. Lett., 153 (1988), 503.
  • M.J. Frisch, M. Head-Gordon, J.A. Pople, Chem. Phys. Lett., 166 (1990), 275.
  • M.J. Frisch, M. Head-Gordon, J.A. Pople, Chem. Phys. Lett., 166 (1990), 281.
  • M. Head-Gordon, T. Head-Gordon, Chem. Phys. Lett., 220 (1994), 122.
  • S. Saebo, J. Almlof, Chem. Phys. Lett., 154 (1989), 83.
  • N.C. Handy, A.J. Cohen, Mol. Phys., 99 (2001), 403.
  • W.M. Hoe, A.J. Cohen, N.C. Handy, Chem. Phys. Lett., 341 (2001), 319.
  • F.A. Hamprecht, A.J. Cohen, D.J. Tozer, N.C. Handy, J. Chem. Phys., 109 (1998), 6264.
  • A.D. Boese, N.L. Doltsinis, N.C. Handy, M. Sprik, J. Chem. Phys., 112 (2000), 1670.
  • A.D. Boese, N.C. Handy, J. Chem. Phys., 114 (2001), 5497.

Abstract Views: 239

PDF Views: 2




  • Properties of Molecular Materials: The Effect of the N-H/B Substitution on the Electronic Structure of 2-hydroxybenzaldimine

Abstract Views: 239  |  PDF Views: 2

Authors

Tareq Irshaidat
Organic Chemistry Division, Department of Chemistry, Al-Hussein Bin Talal University, Ma’an, Jordan

Abstract


2-Hydroxybenzaldimine belongs to the Schiff bases which are important class of the modern molecular technology. Effect of the N-H/B substitution on the electronic structure of the title compound was inspired by the pioneering work of Hargis and co-workers (J. Am. Chem. Soc., 2008, 130 (51), 17471). The DFT/B3LYP investigation included analyzing the structures, the tautomerism energies, the intramolecular charge transfer processes, the bond critical point electron densities, the infrared stretching frequencies, and the frontier orbitals. The results confirm and illustrate that boron is a powerful electron withdrawing group that can force the structure to loosing the aromatic stabilization energy and to forming the keto-tautomer as the more stable skeleton. In addition to that, this substitution has drastic consequences on the various electronic structure aspects. Among them, it can lower the molecular band gap considerably and therefore can be used as the corner stone in designing new molecular electronics and small-molecule dyes. In this regard, we report here a small conjugated -system of a band gap equivalent to 2.42eV (TD-DFT), which is attributed to the keto-tautomer of the -BN2C2 derivative. These results can be considered as a new addition to the boron chemistry.

Keywords


Schiff Base, B3LYP, Boron, NBO, AIM, Band Gap

References