Open Access Open Access  Restricted Access Subscription Access
Open Access Open Access Open Access  Restricted Access Restricted Access Subscription Access

Tools for Simple Sequence Repeat (SSR) Markers


Affiliations
1 Krishi Vigyan Kendra (NDUAT), MAU (U.P.), India
     

   Subscribe/Renew Journal


SSRs or microsatellites are tandem repeats of 2-8nt units of DNA and are ubiquitous in all genomes studied so far. SSR markers have many advantages over the other marker systems. The first advantage is their high reproducibility, which would be the most important in genetic analysis. The second advantage of the SSR marker system is the polymorphic genetic information contents. The third advantage has to do with the co-dominant nature of SSR polymorphisms. The fourth advantage of the SSR marker system is their abundance and distribution in genomes. A fifth advantage of the SSR marker system is that SSRs are preferentially associated with non-repetitive DNA. This review focuses on some of the reasons for SSR mutations that occur due to replication or repair process which may depend on not only the motif size but also the nucleotide composition of each motif as well as orientation of repeats or position with reference to replication origin. In this review tools for SSRs available are given with their advantages and disadvantages.

Keywords

SSRs Marker, RFLP, RAPD, AFLP, PCR, CID, SAT, TROLL, MISA.
Subscription Login to verify subscription
User
Notifications
Font Size


  • Aggarwal, R.K., Hendre, P.S., Varshney, R.K., Bhat, P.R., Krishnakumar, V. and Singh, L. (2007). Identification, characterization and utilization of ESTderived genic microsatellite markers for genome analyses of coffee and related species. Theor. Appl. Genet., 114 : 359-372.
  • Amador, M.L., Oppenheimer, D., Perea, S., Maitra, A., Cusatis, G., Iacobuzio-Donahue, C., Baker, S.D., Ashfaq, R., Takimoto, C., Forastiere, A. and Hidalgo, M. (2004). An epidermal growth factor receptor intron polymorphism mediates response to epidermal growth factor receptor inhibitors. Cancer Res., 64 (24) : 9139 - 9143.
  • Andersen, J. R. and Liberstedt, T. (2003). Functional markers in plants. Trends Plant Sci., 8: 554–560.
  • Bacolla, A. and Wells, R. D. (2009). Non-B DNA conformations as determinants of mutagenesis and human disease. Mol.Carcinog, 48 (4): 273-285.
  • Batley, J., Hopkins, C.J., Cogan, N.O.I., Hand, M., Jewell, E., Kaur, J., Kaur, S., Li, X., Ling, A.E., Love, C., Mountford, H., Todorovic, M., Vardy, M., Walkiewicz, M., Spangenberg and Edwards, D. (2007). Identification and characterization of simple sequence repeat markers from Brassica napus expressed sequences. Mol. Ecol. Notes., 7 : 886-889.
  • Bekessy, S. A., Ennos, R. A., Burgman, M. A., Newton, A. C. and Ades, P. K. (2003). Neutral DNA markers fail to detect genetic divergence in an ecologically important trait. Biol. Conserv., 110: 267–275.
  • Benson, G. (1999). Tandem repeats finder: A programme to analyze DNA sequences. Nucleic Acids Res., 27: 573–580.
  • Boder, P.,Deak, T., Bacso, R., Velich, I., Bisztray, G. D., Fascar, G. and Gyulai, P. (2006). Morphological and genetic investigation of medieval grape seeds. Acta Hort. (ISHS), 713–718.
  • Breseghello, F. and Sorrels, M. E. (2006). Association analysis as a strategy for improvement of quantitative traits in plants. Crop Sci., 46: 1323–1330.
  • Buerstmayr, H., Lemmens, M., Hartl, L., Doldi, L., Steiner, B., Stierschneider, M. and Ruckenbauer, P. (2002). Molecular mapping of QTLs for Fusarium head blight resistance in spring wheat. I. Resistance to fungal spread (Type II resistance). Theor. Appl. Genet., 104: 84–91.
  • Burgess, B.,Mountford, H., Hopkins, C.J., Love, C., Ling, A.E., Spangenberg, G.C., Edwards, D. and Batley, J. (2006). Identification and characterization of simple sequence repeat (SSR) markers derived in silico fromBrassica oleracea genome shotgun sequences. Mol. Ecol. Notes., 1191-1194.
  • Castelo, A.T.,Martins, W. and Gao, G.R. (2002). Troll-Tandem. Bioinformatics, 18: 634-636.
  • Cervigni, G.D., Paniego, N., Díaz, M., Selva, J.P., Zappacosta, D., Zanazzi, D., Landerreche, I., Martelotto, L., Felitti, S., Pessino, S., Spangenberg, G. and Echenique, V. (2008). Expressed sequence tag analysis and development of gene associated markers in a near-isogenic plant system of Eragrostis curvula. Plant. Mol Biol., 67 : 1-10.
  • Chen, C.X., Zhou, P., Choi, Y.A., Huang, S. and Gmitter, F.G. (2006). Mining and characterizing microsatellites from citrus ESTs. Theor. Appl. Genet., 112 : 1248-1257.
  • Chen, X.,Cho, Y. and Mc Couch, S. (2002). Sequence divergence of rice microsatellites in Oryza and other plant species. Mol. Genet. Genomics, 268 : 331–343.
  • Chen, X.F., Laudeman, T.W., Rushton, P.J., Spraggins, T.A. and Timko, M.P. (2007). CGKB:An annotation knowledge base for cowpea (Vigna unguiculata L.) methylation filtered genomic genespace sequences. BMC Bioinf., 8: 112-116.
  • Coil, D. A., Vandersmissen, L., Ginevra, C., Jarraud, S., Lammertyn, E. and Anné, J. (2008). Intragenic tandem repeat variation between Legionella pneumophila strains. BMC Microbiol., 8: 218.
  • Crossa, J., Burgueno, J., Dreisigacker, S., Vargas, M., HerreraFoessel, S.A., Lillemo, M., Singh, R.P., Trethowan, R., Warburton, M. and Franco, J. (2007). Association analysis of historical bread wheat germplasm using additive genetic covariance of relatives and population structure. Genetics, 177: 1889-1913.
  • Cruz, F., Perez, M. and Presa, P. (2005). Distribution and abun dance of microsatellites in the genome of bivalves. Gene., 346 : 241-247.
  • Cummings, C. J. and Zoghbi, H. Y. (2000). Fourteen and counting: Unraveling trinucleotide repeat diseases. Hum. Mol. Genet., 9: 909–916.
  • Dieringer, D. and Schlotterer, C. (2003). Two distinct modes of microsatellite mutation processes: evidence from the complete genomic sequences of nine species. Genome. Res., 13 (10): 2242-2251.
  • Eckert, K. A. and Hile, S. E. (2009). Every microsatellite is different: Intrinsic DNA features dictate mutagenesis of common microsatellites present in the human genome. Mol. Carcinog, 48(4): 379-388.
  • Ennos, R. A. (1996). Utilizing genetic information in plant conservation programmes. In: Aspects of the genesis and maintenance of biological diversity; Hochberg, M.E., Clbert, J., Barbault, R., Eds.; Oxford University Press: Oxford, UK, pp. 278–291.
  • Fitz, Simmons N. N., Moritz, C. and Moore, S. S. (1995). Conservation and dynamics of microsatellite loci over 300 million years of marine turtle evolution. Mol. Biol. Evol., 12: 432–440.
  • Gupta, P. K., Rustgi, S., Sharma, S., Singh, R., Kumar, N. and Balyan, H. S. (2003). Transferable EST-SSR markers for the study of polymorphism and genetic diversity in bread wheat. Mol. Genet. Genomics, 270: 315–323.
  • Hancock, J.M. and Santibanez-Koref, M.F. (1998). Trinucleotide expansion diseases in the context of micro- and minisatellite evolution. EMBO J. 17: 5521-5524.
  • Hancock, J. M., Worthey, E.A. and Santibáñez-Koref, M.F. (2001). A role for selection in regulating the evolutionary emergence of disease-causing and other coding CAG repeats in humans and mice. Mol. Biol. Evol., 18 (6): 1014-1023.
  • Holderegger, R.,Kamm, U. and Gugerli, F. (2006). Adaptive vs. neutral genetic diversity: Implications for landscape genetics. Landsci. Ecol., 21: 797–807.
  • Hopkins, C.J., Cogan, N.O.I., Hand, M., Jewell, E., Kaur, J., Li, X., Lim, G.A.C., Ling, A., Love, C., Mountford, H., Todorovic, M., Vardy, M., Spangenberg, G.C., Edwards, D. and Batley, J. (2007). Sixteen new simple sequence repeat markers from Brassica juncea expressed sequences and their crossspecies amplification.Mol. Ecol. Notes., 7: 697-700.
  • Jacob, K.D. and Eckert, K. A. (2007). Escherichia coli DNA polymerase IV contributes to spontaneous mutagenesis at coding sequences but not microsatellite alleles. Mutat. Res., 619 (1-2) : 93-103.
  • Jewell, E., Robinson, A., Savage, D., Erwin, T., Love, C.G., Lim, G.A.C., Li, X., Batley, J., Spangenberg, G.C. and Edwards, D.( 2006) .SSR Primer and SSR Taxonomy Tree: Biome SSR discovery. Nucleic Acids Res., 34 : 656- 659.
  • Kantety, R.V., Rota, M.L., Matthews, D.E. and Sorrells, M.E. (2002). Data mining for simple sequence repeats in expressed sequence tags from barely, maize, rice, sorghum and wheat. Plant Mol. Biol., 48: 501-510.
  • Kashi, Y. and King, D.G. (2006). Simple sequence repeats as advantageous mutators in evolution. Trends Genet., 22(5): 253-259.
  • Kehrer-Sawatzki, H. and Cooper, D. N. (2008). Molecular mechanisms of chromosomal rearrangement during primate evolution. Chromosome Res., 16(1): 41-56.
  • Keniry, A.,Hopkins, C.J., Jewell, E., Morrison, B., Spangenberg, G.C., Edwards, D. and Batley, J. (2006). Identification and characterization of simple sequence repeat (SSR) markers from Fragaria x ananassa expressed sequences. Mol. Ecol. Notes., 6 : 319-322.
  • Khlestkina, E.K., Than, M.H.M., Pestsova, E.G., Röder, M.S., Malyshev, S.V., Korzun, V. and Börner, A. (2004). Mapping of 99 new microsatellitederived loci in rye (Secale cereale L.) including 39 expressed sequence tags. Theor. Appl. Genet., 109 : 725-732.
  • Kostia, S., Varvio, S. L., Vakkari, P. and Pulkkinen, P. (1995). Microsatellite sequences in a conifer, Pinus sylvestris.Genome, 38 : 1244–1248.
  • Kota, R.,Varshney, R.K., Thiel, T., Dehmer, K.J. and Graner, A. (2001). Generation and comparison of EST-derived SSRs and SNPs in barley (Hordeum vulgare L.). Hereditas, 135 : 145-151.
  • Kwon, S.,Hong, S., Son, J., Lee, J. K., Cha, Y., Eun, M. andKim, N. (2006). CACTA and MITE transposon distributions on a genetic map of rice using F15 RILs derived from Milyang 23 and Gihobyeo hybrids. Mol. Cells, 21: 360–366.
  • Lee, J. R.,Hong, G. Y., Dixit, A., Chung, J. W., Ma, K. H., Lee, J. H., Kang, H. K., Cho, Y. H., Gwag, J. G. and Park, Y. J. (2008). Characterization of microsatellite loci developed for Amaranthus hypochondriacus and their cross-amplifications in wild species. Conserv. Genet. 9: 243–246.
  • Liang, X., Chen, X., Hong, Y., Liu, H., Zhou, G., Li, S. and Guo, B. (2009). Utility of EST-derived SSR in cultivated peanut (Arachis hypogaea L.) and Arachis wild species. BMC Plant Biol., 9 : 35.
  • Lindqvist, C., Scheen, A.C., Yoo, M.J., Grey, P., Oppenheimer, D.G., LeebensMack, J.H., Soltis, D.E., Soltis, P.S. and Albert, V.A. (2006). An expressed sequence tag (EST) library from developing fruits of an Hawaiian endemic mint (Stenogynerugosa, Lamiaceae): characterization and microsatellite markers. BMC Plant Biol., 6 : 16.
  • Ling, A.E.,Kaur, J., Burgess, B., Hand, M., Hopkins, C.J., Li, X., Love, C.G., Vardy, M., Walkiewicz, M., Spangenberg, G., Edwards, D. and Batley, J. (2007). Characterization of simple sequence repeat markers derived in silico from Brassica rapa bacterial artificial chromosome sequences and their application in Brassica napus. Mol. Ecol. Notes.,7: 273-277.
  • Liquori, C. L., Ricker, K., Moseley, M. L., Jacobsen, J. F., Kress, W., Naylor, S. L., Day, J. W. and Ranum, L. P. W. (2001). Myotonic dystrophy type 2 caused by a CCTG expansion in intron 1 of ZNF9. Science, 293: 864–867.
  • Li, W. H. and Graur, D. (1991). Fundamentals of molecular evolution. Sinauer Pub.: Sunderland, MA, USA.
  • Li, Y. C., Korol, A.B., Fahima, T., Beiles, A. and Nevo, E. (2002).Microsatellites:Genomic distribution, putative functions and mutational mechanisms: A review. Mol. Ecol., 11: 2453– 2465.
  • Li, Y.C., Korol, A.B., Fahima, T. and Nevo, E. (2004). Microsatellites within genes: Structure, function, and evolution. Mol. Biol. Evol., 21: 991–1007.
  • Lukusa, T. and Fryns, J. P. (2008). Human chromosome fragility. Biochem. Biophys. Acta., 1779 (1): 3-16.
  • Ma, K.H.,Kim, N.S., Lee, G.A., Lee, S.Y., Lee, J.K., Yi, J.Y., Park, Y.J., Kim, T.S., Gwag, J.G. and Kwon, S.J. (2009). Development of SSR markers for studies of diversity in common buckwheat. Theor. Appl. Genet., 119: 1247–1254.
  • Maia, L.C., Palmieri, D.A., Souza, V.Q., Kopp, M.M., Carvalho, F.I. and Oliveira, A.C. (2008). SSR Locator: Tool for Simple Sequence Repeat Discovery Integrated with Primer Design and PCR Simulation. Internat. J. Plant Genomics,1–9. ( doi:10.1155/ 2008/412696).
  • Manen, J.F., Bouby, L., Dalnoki, O., Marinval, P., Turgay, M. and Schlumbaum, A. (2003). Microsatellites from archaeological Vitis vinifera seeds allow a tentative assignment of the geographical origin of ancient cultivars. J. Archaeol. Sci., 30: 721–729.
  • Marcotte, E.M., Pellegrini, M., Yeates, T.O. and Eisenberg, D. (1999). A census of protein repeats. J. Mol. Biol., 293: 151– 160.
  • Morgante, M., Hanafey, M. and Powell, W. (2002).Microsatellites are preferentially associated with nonrepetitive DNA in plant genomes. Nat. Genet., 30: 194–200.
  • Morgante, M., Rafalski, A., Biddle, P., Tingey, S. and Olivieri, A.M. (1994). Genetic mapping and variability of seven soybean simple sequence repeat loci. Genome, 37: 763–769.
  • Mrázek, J. (2006). Analysis of distribution indicates diverse functions of simple sequence repeats in Mycoplasma genomes. Mol. Biol. Evol., 23(7): 1370-1385.
  • Peakall, R., Gilmore, S., Keys, W., Morgante, M. and Rafalski, A. (1998). Cross-species amplification of soybean (Glycine max) simple sequence repeats (SSRs) within the genus and other legume genera: Implications for the transferability of SSRs in plants. Mol. Biol. Evol., 15: 1275–1287.
  • Pérez, M., Cruz, F. and Presa, P. (2005). Distribution properties of poly mononucleotide repeat in molluscan genomes. J. Hered. 96 (1) : 40-51.
  • Powell, W., Morgante, M., Andre, C., Hanafey, M., Vogel, J., Tingey, S. and Rafalski, A. (1996). The comparison of RFLP, RAPD, AFLP and SSR (microsatellite) markers for germplasm analysis. Mol. Breed., 2: 225–238.
  • Rico, C., Rico, I. and Hewitt, G. (1996). 470 million years of conservation of microsatellite loci among fish species. Proc. R. Soc. Lond., B., Biol. Sci., 263 : 549–557.
  • Robinson, A.J.,Love, C.G., Batley, J., Barker, G. and Edwards, D. (2004). Simple sequence repeat marker loci discovery using SSR primer. Bioinfor, 20 : 1475-1476.
  • Ronning, C. M., Stegalkina, S.S., Ascenzi, R.A., Bougri, O., Hart, A.L., Utterbach, T. R., Vanaken, S. E., Riedmuller, S. B., White, J. A. and Cho, J. (2003). Comparative analyses of potato expressed sequence tag libraries. Plant Physiol., 131: 419– 429.
  • Scott, K. D., Eggler, P., Seaton, G., Rossetto, M., Ablett, E. M., Lee, L.S. and Henry, R. J. (2000). Analysis of SSRs derived from grape ESTs. Theor. Appl. Genet., 100 : 723–726.
  • Shin, J. H., Kwon, S. J., Lee, J. K., Min, H. K. and Kim, N.S. (2006). Genetic diversity of maize kernel starch-synthesis genes with SNAPs.Genome, 49 : 1287–1296.
  • Singhal, D., Gupta, P., Sharma, P., Kashyap, N., Anand, S. and Sharma, H. (2011). In-silico single nucleotide polymorphisms (SNP) mining of sorghum bicolor genome. African J.Biotechnol., 10 (4) : 580-583.
  • Slavov, G. T., Howe, G. T., Gyaourova, A.V., Birkes, D. S. and Adams, W. T. (2005). Estimating pollen flow using SSR markers and paternity exclusion: Accounting for mistyping. Mol. Ecol., 14 : 3109–3121.
  • Sreenu, V. B., Kumar, P., Nagaraju, J. and Nagarajam, H. A. (2007). Simple sequence repeats in mycobacterial genomes. J. Biosci., 32(1): 3-15.
  • Streelman, J.T. and Kocher, T.D. (2002). Microsatellite variation associated with prolactin expression and growth of saltchallenged tilapia. Physiol. Genomics, 9: 1–4.
  • Szalma, S.J., Buckler, E.S., Snook, M.E. and McMullen, M.D. (2005). Association analysis of candidate genes for maysin and chlorogenic acid accumulation in maize silks. Theor. Appl. Genet., 110: 1324–1333.
  • Temnykh, S., DeClerck, G., Lukashova, A., Lipovich, L., Cartinhour, S. and McCouch, S. (2001). Computational and experimental analysis of microsatellites in rice (Oryza sativa L.) : Frequency, length variation, transposon associations and genetic marker potential.Genome Res., 11: 1441–1452.
  • Thiel, T.,Michalek, W., Varshney, R.K. and Graner, A. (2003). Exploiting EST databases for the development and characterization of gene-derived SSR-markers in barley (Hordeum vulgare L.). Theor. Appl. Genet.,106 : 411-422.
  • Tóth, G., Gáspári, Z. and Jurka, J. (2000). Microsatellites in different eukaryotic genomes: Survey and analysis. Genome Res., 10: 967–981.
  • Van, Tienderen P. H.,De Haan, A. A., Van der Linden, C. G. and Vosman, B. (2002). Biodiversity assessment using markers for ecologically important traits. Trends Ecol. Evol., 17: 577–582.
  • Varshney, R.K., Graner, A. and Sorrells, M.E. (2005). Genic microsatellite markers in plants: Features and applications. Trends Biotechnol., 23: 48–55.
  • Volfovsky, N.,Haas, B.J. and Salzberg, S.L. (2001). A clustering method for repeat analysis in DNA sequences. Genome Biol., 2 (8) RESEARCH0027.
  • Vuylsteke, M., Mank, R., Antonise, R., Bastiaans, E., Senior, M. L., Stuber, C. W., Melchinger, A. E., Lbberstedt, T., Xia, X. C.and Stam, P. (1999). Two high-density AFLP® linkage maps of Zea mays L.: Analysis of distribution of AFLP markers. Theor. Appl. Genet., 99: 921–935.
  • Wang, Z., Weber, J. L., Zhong, G. and Tanksley, S. D. (1994). Survey of plant short tandem DNA repeats. Theor. Appl. Genet., 88: 1–6.
  • White, G. and Powell, W. (1997). Cross-species amplification of SSR loci in the Meliaceae family.Mol. Ecol., 6: 1195–1197.
  • Winton, L.M., Krohn, A.L. and Leiner, R.H. (2007). Microsatellite markers for Sclerotiniasubarctica nom. prov., a new vegetable pathogen of the High North. Mol. Ecol. Notes., 7:1077-1079.
  • Wren, J. D., Forgacs, E., Fondon, J. W., Pertsemlidis, A., Cheng, S. Y., Gallardo, T., Williams, R. S., Shohet, R. V., Minna, J. D. and Garner, H. R. (2000). Repeat polymorphisms within gene regions: Phenotypic and evolutionary implications. Am. J. Hum. Genet., 67: 345–356.
  • Yamakoshi, K., Shishido, Y. and Shimoda, N. (2005). Generation of aberrant transcripts of and free DNA ends in zebra fish no tail gene. Mar Biotechnol., 7 (3) : 163-172.
  • Yu, J.K., Dake, T.M., Singh, S., Benscher, D., Li, W., Gill, B.S. and Sorrells, M.E. (2004). Development and mapping of ESTderived simple sequence repeat (SSR) markers for hexaploid wheat. Genome, 47 : 805 - 818.
  • Zeng, Y.,Yang, S., Cui, H., Yang, X., Xu, L., Du, J., Pu, X., Li, Z., Cheng, Z. and Huang, X. (2009). QTLs of cold-related traits at the booting stage for NIL-RILsin rice revealed by SSR. Genes Genom., 31: 143–145.
  • Zhang, X., Yue, B., Jiang, W. and Song, Z. (2009). The complete mitochondrial genome of rock carp Procypris rabaudi (Cypriniformes: Cyprinidae) and phylogenetic implications. Mol. Biol. Rep., 36 (5) : 981-191.
  • http://www.gramene.org/db/searches/ssrtool, Temnykh et al., 2001).
  • (http://pgrc.ipk-gatersleben.de/misa/).
  • (http://www.cbcb.umd.edu/software/Repeat Finder/) . (http://www.ufpel. edu.br/).
  • http://www.shrimp.ufscar.br/cid/index.php.
  • (http://tandem.bu.edu/trf/trf.html) .
  • (http://acpfg.imb.uq.edu.au/ssrpoly. php).
  • http://www.shrimp.ufscar.br/cid/index.php

Abstract Views: 381

PDF Views: 0




  • Tools for Simple Sequence Repeat (SSR) Markers

Abstract Views: 381  |  PDF Views: 0

Authors

Alok Kumar Singh
Krishi Vigyan Kendra (NDUAT), MAU (U.P.), India
N. K. Singh
Krishi Vigyan Kendra (NDUAT), MAU (U.P.), India
V. K. Singh
Krishi Vigyan Kendra (NDUAT), MAU (U.P.), India
D. P. Singh
Krishi Vigyan Kendra (NDUAT), MAU (U.P.), India
N. P. Singh
Krishi Vigyan Kendra (NDUAT), MAU (U.P.), India

Abstract


SSRs or microsatellites are tandem repeats of 2-8nt units of DNA and are ubiquitous in all genomes studied so far. SSR markers have many advantages over the other marker systems. The first advantage is their high reproducibility, which would be the most important in genetic analysis. The second advantage of the SSR marker system is the polymorphic genetic information contents. The third advantage has to do with the co-dominant nature of SSR polymorphisms. The fourth advantage of the SSR marker system is their abundance and distribution in genomes. A fifth advantage of the SSR marker system is that SSRs are preferentially associated with non-repetitive DNA. This review focuses on some of the reasons for SSR mutations that occur due to replication or repair process which may depend on not only the motif size but also the nucleotide composition of each motif as well as orientation of repeats or position with reference to replication origin. In this review tools for SSRs available are given with their advantages and disadvantages.

Keywords


SSRs Marker, RFLP, RAPD, AFLP, PCR, CID, SAT, TROLL, MISA.

References