The PDF file you selected should load here if your Web browser has a PDF reader plug-in installed (for example, a recent version of Adobe Acrobat Reader).

If you would like more information about how to print, save, and work with PDFs, Highwire Press provides a helpful Frequently Asked Questions about PDFs.

Alternatively, you can download the PDF file directly to your computer, from where it can be opened using a PDF reader. To download the PDF, click the Download link above.

Fullscreen Fullscreen Off


This paper proposes an automatic global thresholding method based on 2D Tsallis-Havrda-Charva+-t entropy and histogram of Local Binary Patterns (LBP). Tsalli-Havrda-Charvat entropy is obtained from 2D histogram, which has determined by using the LBP decimal value and the average decimal value of its neighborhood. Based on this entropy we obtain the optimal threshold pair by maximizing the criterion function. LBP histogram is adopted to capture the texture information. LBP's high performance for texture characterization helps to make our method more suitable for thresholding the images in problem. In this paper we report the effectiveness of our thresholding method when applied to some real-world and synthetic images, and experiments show that the performance of our proposed method is promising, robust and fast.

Keywords

Image Segmentation, 2D Histogram, Local Binary Pattern, Thresholding.
User
Notifications
Font Size