Open Access Open Access  Restricted Access Subscription Access

Maintaining the Telomere and its Implication in Cancer


Affiliations
1 Department of Molecular and Human Genetics, Centre for Genomics, Jiwaji University, Gwalior 474 011, India
 

Genomic instability has been proposed as one of the emerging hallmarks of cancer. However, molecular mechanisms which cause genomic or chromosomal instability still elude us in various cancers. One of the causes for this genomic instability is dysfunction of the telomere. Telomere dysfunction is associated with an increased risk for different cancers, which results, in principle, due to telomere shortening and loss of telomeric proteins which caps and guard telomeres to distinguish it from double-stranded breaks. In this review, we highlight existing understanding of telomeres, telomerase and their role in cancer progression.

Keywords

Cancer Progression, Epigenetics, Genomic Instability, Telomere Dysfunction, Telomerase.
User
Notifications
Font Size

  • McClintock, B., The behavior in successive nuclear divisions of a chromosome broken at meiosis. Proc. Natl. Acad. Sci. USA, 1939, 25, 405–416.
  • Muller, H. J., The re-making of chromosomes. Collecting Net., 1938, 13, 181–198.
  • Hayflick, L. and Moorhead, P. S., The serial cultivation of human diploid cell strains. Exp. Cell Res., 1961, 25, 585–612.
  • Olovnikov, A. M., A theory of marginotomy. The incomplete copying of template margin in enzymic synthesis of polynucleotides and biological significance of the phenomenon. J. Theor. Biol., 1973, 41, 181–190.
  • Watson, J. D., Origin of concatemeric T7DNA. Nature New Biol., 1972, 239, 197–201.
  • Szostak, J. W. and Blackburn, E. H., Cloning yeast telomeres on linear plasmid vectors. Cell, 1982, 29, 245–255.
  • Greider, C. W. and Blackburn, E. H., Identification of a specific telomere terminal transferase activity in Tetrahymena extracts. Cell, 1985, 43, 405–413.
  • Hastie, N. D., Dempster, M., Dunlop, M. G., Thompson, A. M., Green, D. K. and Allshire, R. C., Telomere reduction in human colorectal carcinoma and with ageing. Nature, 1990, 346, 866–868.
  • de Lange, T., Shiue, L., Myers, R. M., Cox, D. R., Naylor, S. L., Killery, A. M. and Varmus, H. E., Structure and variability of human chromosome ends. Mol. Cell Biol., 1990, 10, 518–527.
  • Kim, N. W. et al., Specific association of human telomerase activity with immortal cells and cancer. Science, 1994, 266, 2011–2014.
  • de Lange, T. and Jacks, T., For better or worse? Telomerase inhibition and cancer. Cell, 1999, 98, 273–275.
  • Hackett, J. A. and Greider, C. W., Balancing instability: dual roles for telomerase and telomere dysfunction in tumorigenesis. Oncogene, 2002, 21, 619–626.
  • Lundbald, V. and Blackburn, E. H., An alternative pathway for yeast telomere maintenance rescues est1– senescence. Cell, 1993, 73, 347–360.
  • Bryan, T. M. and Reddel, R. R., Telomere dynamics and telomerase activity in in vitro immortalised human cells. Eur. J. Cancer, 1997, 33, 767–773.
  • de Lange, T., How telomeres solve the end protection problem. Science, 2009, 326, 948–952.
  • Griffith, J. D., Comeau, L., Rosenfield, S., Stansel, R. M., Bianchi, A., Moss, H. and de Lange, T., Mammalian telomeres end in a large duplex loop. Cell, 1999, 97, 503–514.
  • de Lange, T., T-loops and the origin of telomeres. Nature Rev. Mol. Cell Biol., 2004, 5, 323–329.
  • Lipps, H. J. and Rhodes, D., G-quadruplex structures: in vivo evidence and function. Trends Cell Biol., 2009, 19, 414–422.
  • Liu, D., O’Connor, M. S., Qin, J. and Songyang, Z., Telosome, a mammalian telomere-associated complex formed by multiple telomeric proteins. J. Biol. Chem., 2004, 279, 51338–51342.
  • Zhong, Z., Shiue, L., Kaplan, S. and de Lange, T., A mammalian factor that binds telomeric TTAGGG repeats in vitro. Mol. Cell Biol., 1992, 12, 4834–4843.
  • van Steensel, B. and de Lange, T., Control of telomere length by the human telomeric protein TRF1. Nature, 1997, 385, 740– 743.
  • Broccoli, D., Smogorzewska, A., Chong, L. and de Lange, T., Human telomeres contain two distinct Myb-related proteins, TRF1 and TRF2. Nature Genet., 1997, 17, 231–235.
  • Smogorzewska, A., van Steensel, B., Bianchi, A., Oelmann, S., Schaefer, M. R., Schnapp, G. and de Lange, T., Control of human telomere length by TRF1 and TRF2. Mol. Cell Biol., 2000, 20, 1659–1668.
  • Karlseder, J., Kachatrian, L., Takai, H., Mercer, K., Hingorani, S., Jacks, T. and de Lange, T., Targeted deletion reveals an essential function for the telomere length regulator Trf1. Mol. Cell Biol., 2003, 23, 6533–6541.
  • Celli, G. B. and de Lange, T., DNA processing is not required for ATM-mediated telomere damage response after TRF2 deletion. Nature Cell Biol., 2005, 7, 712–718.
  • Li, B., Oestreich, S. and de Lange, T., Identification of human Rap1: implications for telomere evolution. Cell, 2000, 101, 471–483.
  • Svendsen, J. M., Smogorzewska, A., Sowa, M. E., O’Connell, B. C., Gygi, S. P., Elledge, S. J. and Harper, J. W., Mammalian BTBD12/SLX4 assembles a Holliday junction resolvase and is required for DNA repair. Cell, 2009, 138, 63–77.
  • Martinez, P. et al., Mammalian Rap1 controls telomere function and gene expression through binding to telomeric and extratelomeric sites. Nature Cell Biol., 2010, 12, 768–780.
  • Lei, M., Podell, E. R. and Cech, T. R., Structure of human POT1 bound to telomeric single-stranded DNA provides a model for chromosome end-protection. Nature Struct. Mol. Biol., 2004, 11, 1223–1229.
  • Ramsay, A. J. et al., POT1 mutations cause telomere dysfunction in chronic lymphocytic leukemia. Nature Genet., 2013, 45, 526– 530.
  • Egan, E. D. and Collins, K., Biogenesis of telomerase ribonucleoproteins. RNA, 2012, 18, 1747–1759.
  • Schmidt, J. C. and Cech, T. R., Human telomerase: biogenesis, trafficking, recruitment, and activation. Genes Dev., 2015, 29, 1095–1105.
  • Egan, E. D. and Collins, K., An enhanced H/ACA RNP assembly mechanism for human telomerase RNA. Mol. Cell Biol., 2012, 32, 2428–2439.
  • Kiss, T., Fayet-Lebaron, E. and Jády, B. E., Box H/ACA small ribonucleoproteins. Mol. Cells, 2010, 37, 597–606.
  • Venteicher, A. S. et al., A human telomerase holoenzyme protein required for Cajal body localization and telomere synthesis. Science, 2009, 323, 644–648.
  • Zhang, Q., Kim, N. K. and Feigon, J., Architecture of human telomerase RNA. Proc. Natl. Acad. Sci. USA, 2011, 108, 20325– 20332.
  • Greider, C. W. and Blackburn, E. H., Identification of a specific telomere terminal transferase activity in Tetrahymena extracts. Cell, 1985, 43, 405–413.
  • Shippen-Lentz, D. and Blackburn, E. H., Functional evidence for an RNA template in telomerase. Science, 1990, 247, 546–552.
  • Hao, L. Y., Armanios, M., Strong, M. A., Karim, B., Feldser, D. M., Huso, D. and Greider, C. W., Short telomeres, even in the presence of telomerase, limit tissue renewal capacity. Cell, 2005, 123, 1121–1131.
  • Hahn, W. C., Counter, C. M., Lundberg, A. S., Beijersbergen, R. L., Brooks, M. W. and Weinberg, R. A., Creation of human tumour cells with defined genetic elements. Nature, 1999, 400, 464–468.
  • Marión, R. M. and Blasco, M. A., Telomeres and telomerase in adult stem cells and pluripotent embryonic stem cells. Adv. Exp. Med. Biol., 2010, 695, 118–131.
  • Flores, I., Canela, A., Vera, E., Tejera, A., Cotsarelis, G. and Blasco, M. A., The longest telomeres: a general signature of adult stem cell compartments. Genes Dev., 2008, 22, 654–667.
  • Bryan, T. M., Englezou, A., Dalla-Pozza, L., Dunham, M. A. and Reddel, R. R., Evidence for an alternative mechanism for maintaining telomere length in human tumors and tumor-derived cell lines. Nature Med., 1997, 3, 1271–1274.
  • Flynn, R. L. et al., TERRA and hnRNPA1 orchestrate an RPA-toPOT1 switch on telomeric single-stranded DNA. Nature, 2011, 471, 532–536.
  • Maloisel, L., Fabre, F. and Gangloff, S., DNA polymerase delta is preferentially recruited during homologous recombination to promote heteroduplex DNA extension. Mol. Cell Biol., 2008, 28, 1373–1382.
  • Sharma, S., Hicks, J. K., Chute, C. L., Brennan, J. R., Ahn, J. Y., Glover, T. W. and Canman, C. E., REV1 and polymerase ζ facilitate homologous recombination repair. Nucleic Acids Res., 2012, 40, 682–691.
  • Wyatt, H. D., Sarbajna, S., Matos, J. and West, S. C., Coordinated actions of SLX1–SLX4 and MUS81–EME1 for Holliday junction resolution in human cells. Mol. Cells, 2013, 52, 234–247.
  • Mu, Y., Zhang, Q., Mei, L., Liu, X., Yang, W. and Yu, J., Telomere shortening occurs early during gastrocarcinogenesis. Med. Oncol., 2012, 29, 893–898.
  • Lü, M. H., Deng, J. Q., Cao, Y. L., Fang, D. C., Zhang, Y. and Yang, S. M., Prognostic role of telomerase activity in gastric adenocarcinoma: a meta-analysis. Exp. Theor. Med., 2012, 3, 728–734.
  • Jeon, H. S. et al., Telomere length of tumor tissues and survival in patients with early stage non-small cell lung cancer. Mol. Carcinogen., 2014, 53, 272–279.
  • Lantuejoul, S. et al., Differential expression of telomerase reverse transcriptase (hTERT) in lung tumours. Br. J. Cancer, 2004, 90, 1222–1229.
  • Marchetti, A. et al., Prediction of survival in stage I lung carcinoma patients by telomerase function evaluation. Lab. Invest., 2002, 82, 729–736.
  • Wang, L., Soria, J. C., Kemp, B. L., Liu, D. D., Mao, L. and Khuri, F. R., hTERT expression is a prognostic factor of survival in patients with stage I non-small cell lung cancer. Clin. Cancer Res., 2002, 8, 2883–2889.
  • van Heek, N. T. et al., Telomere shortening is nearly universal in pancreatic intraepithelial neoplasia. Am. J. Pathol., 2002, 161, 1541–1547.
  • Hashimoto, Y. et al., Telomere shortening and telomerase expression during multistage carcinogenesis of intraductal papillary mucinous neoplasms of the pancreas. J. Gastrointest. Surg., 2008, 12, 17–29.
  • Gu, H., Xin, X., Pan, Y., Zhang, H., Tian, S. and Sun, C., Telomerase activity as a marker for differential diagnosis of pancreatic adenocarcinoma: a systematic review and meta-analysis. Int. J. Biol. Markers, 2015, 31, e126–e137.
  • Hansel, D. E. et al., Telomere length variation in biliary tract metaplasia, dysplasia, and carcinoma. Mod. Pathol., 2006, 19, 772–779.
  • Luzar, B., Poljak, M., Cör, A., Klopcic, U. and Ferlan-Marolt, V., Expression of human telomerase catalytic protein in gallbladder carcinogenesis. J. Clin. Pathol., 2005, 58, 820–825.
  • Poojary, S. S., Mishra, G., Gupta, S., Shrivastav, B. R. and Tiwari, P. K., Dysfunction of subtelomeric methylation and telomere length in gallstone disease and gallbladder cancer patients of North Central India. J. Hepato-Biliary-Pancreat. Sci., 2016, 23, 276–282.
  • Hartmann, U., Brümmendorf, T. H., Balabanov, S., Thiede, C., Illme, T. and Schaich, M., Telomere length and hTERT expression in patients with acute myeloid leukemia correlates with chromosomal abnormalities. Haematologica, 2005, 90, 307–316.
  • Smogorzewska, A. and de Lange, T., Regulation of telomerase by telomeric proteins. Annu. Rev. Biochem., 2004, 73, 177–208.
  • Yamada, M., Tsuji, N., Nakamura, M., Moriai, R., Kobayashi, D., Yagihashi, A. and Watanabe, N., Down-regulation of TRF1, TRF2 and TIN2 genes is important to maintain telomeric DNA for gastric cancers. Anticancer Res., 2002, 22, 3303–3307.
  • Saito, K. et al., Gene expression for suppressors of telomerase activity (telomeric-repeat binding factors) in breast cancer. Jpn. J. Cancer Res., 2002, 93, 253–258.
  • La Torre, D. et al., Expression of telomeric repeat binding factor-1 in astroglial brain tumors. Neurosurgery, 2005, 56, 802–810.
  • Oh, B. K., Kim, Y. J., Park, C. and Park, Y. N., Up-regulation of telomere-binding proteins, TRF1, TRF2, and TIN2 is related to telomere shortening during human multistep hepatocarcinogenesis. Am. J. Pathol., 2005, 166, 73–80.
  • Nakanishi, K. et al., Expression of mRNAs for telomeric repeat binding factor (TRF)-1 and TRF2 in atypical adenomatous hyperplasia and adenocarcinoma of the lung. Clin. Cancer Res., 2003, 9, 1105–1111.
  • Garcia-Aranda, C. et al., Correlations of telomere length, telomerase activity, and telomeric-repeat binding factor 1 expression in colorectal carcinoma. Cancer, 2006, 106, 541–551.
  • Gao, J., Zhang, J., Long, Y. and Lu, X., Expression of telomere binding proteins in gastric cancer and correlation with clinicopathological parameters. Asia-Pac. J. Clin. Oncol., 2011, 7, 339–345.
  • Poonepalli, A., Banerjee, B., Ramnarayanan, K., Palanisamy, N., Putti, T. C. and Hande, M. P., Telomere-mediated genomic instability and the clinico-pathological parameters in breast cancer. Genes Chromosomes Cancer, 2008, 47, 1098–1109.
  • de Lange, T., Shelterin: the protein complex that shapes and safeguards human telomeres. Genes Dev., 2005, 19, 2100–2110.
  • Yang, L. et al., Telomere-binding protein TPP1 modulates telomere homeostasis and confers radioresistance to human colorectal cancer cells. PLoS ONE, 2013, 8, e81034.
  • Lin, X., Gu, J., Lu, C., Spitz, M. R. and Wu, X., Expression of telomere-associated genes as prognostic markers for overall survival in patients with non-small cell lung cancer. Clin. Cancer Res., 2006, 12, 5720–5725.
  • Poojary, S. S., Mishra, G., Singh, T. D., Gupta, S., Shrivastav, B. R. and Tiwari, P. K., Telomere length variation and expression analysis of Shelterin complex genes during gallbladder carcinogenesis. J. Cancer Res. Theor., 2016; http://www.cancerjournal.net/preprintarticle.asp?id=184512;type=0
  • Matsutani, N. et al., Expression of telomeric repeat binding factor 1 and 2 and TRF1-interacting nuclear protein 2 in human gastric carcinomas. Int. J. Oncol., 2001, 19, 507–512.
  • Yokota, T. et al., Telomere length variation and maintenance in hepatocarcinogenesis. Cancer, 2003, 98, 110–118.
  • Kanauchi, H., Wada, N., Ginzinger, D. G., Yu, M., Wong, M. G., Clark, O. H. and Duh, Q. Y., Diagnostic and prognostic value of fas and telomeric-repeat binding factor-1 genes in adrenal tumors. J. Clin. Endocrinol. Metab., 2003, 88, 3690–3693.
  • Bellon, M., Datta, A., Brown, M., Pouliquen, J. F., Couppie, P., Kazanji, M. and Nicot, C., Increased expression of telomere length regulating factors TRF1, TRF2 and TIN2 in patients with adult T-cell leukemia. Int. J. Cancer, 2006, 119, 2090–2097.
  • Kishi, S., Wulf, G., Nakamura, M. and Lu, K. P., Telomeric protein Pin2/TRF1 induces mitotic entry and apoptosis in cells with short telomeres and is down-regulated in human breast tumors. Oncogene, 2001, 20, 1497–1508.
  • Klapper, W., Krams, M., Qian, W., Janssen, D. and Parwaresch, R., Telomerase activity in B-cell non-Hodgkin lymphomas is regulated by hTERT transcription and correlated with telomerebinding protein expression but uncoupled from proliferation. Br. J. Cancer, 2003, 89, 713–719.
  • Sainger, R. N., Telang, S. D., Shukla, S. N. and Patel, P. S., Clinical significance of telomere length and associated proteins in oral cancer. Biomarker Insights, 2007, 2, 9–19.
  • Zha, Y., Gan, P., Yao, Q., Ran, F. M. and Tan, J., Downregulation of Rap1 promotes 5-fluorouracil-induced apoptosis in hepatocellular carcinoma cell line HepG2. Oncol. Rep., 2014, 31, 1691–1698.
  • Yamada, K. et al., Decreased gene expression for telomeric-repeat binding factors and TIN2 in malignant hematopoietic cells. Anticancer Res., 2002, 22, 1315–1320.
  • Bariol, C., Suter, C., Cheong, K., Ku, S. L., Meagher, A., Hawkins, N. and Ward, R., The relationship between hypomethylation and CpG island methylation in colorectal neoplasia. Am. J. Pathol., 2003, 162, 1361–1371.
  • Suzuki, K., Suzuki, I., Leodolter, A., Alonso, S., Horiuchi, S., Yamashita, K. and Perucho, M., Global DNA demethylation in gastrointestinal cancer is age dependent and precedes genomic damage. Cancer Cell, 2006, 9, 199–207.
  • Soares, J., Pinto, A. E., Cunha, C. V., André, S., Barão I., Sousa, J. M. and Cravo, M., Global DNA hypomethylation in breast carcinoma: correlation with prognostic factors and tumor progression. Cancer, 1999, 85, 112–118.
  • Tommerup, H., Dousmanis, A. and de Lange, T., Unusual chromatin in human telomeres. Mol. Cell Biol., 1994, 14, 5777–5785.
  • García-Cao, M., O’Sullivan, R., Peters, A. H., Jenuwein, T. and Blasco, M. A., Epigenetic regulation of telomere length in mammalian cells by the Suv39h1 and Suv39h2 histone methyltransferases. Nature Genet., 2004, 36, 94–99.
  • Steinert, S., Shay, J. W. and Wright, W. E., Modification of subtelomeric DNA. Mol. Cell Biol., 2004, 24, 4571–4580.
  • Fraga, M. F. et al., Loss of acetylation at Lys16 and trimethylation at Lys20 of histone H4 is a common hallmark of human cancer. Nature Genet., 2005, 37, 391–400.
  • Gonzalo, S., Jaco, I., Fraga, M. F., Chen, T., Li, E., Esteller, M. and Blasco, M. A., DNA methyltransferases control telomere length and telomere recombination in mammalian cells. Nature Cell Biol., 2006, 8, 416–424.
  • Gonzalo, S. and Blasco, M. A., Role of Rb family in the epigenetic definition of chromatin. Cell Cycle, 2005, 4, 752–755.
  • García-Cao, M., Gonzalo, S., Dean, D. and Blasco, M. A., A role for the Rb family of proteins in controlling telomere length. Nature Genet., 2002, 32, 415–419.
  • Vera, E., Canela, A., Fraga, M. F., Esteller, M. and Blasco, M. A., Epigenetic regulation of telomeres in human cancer. Oncogene, 2008, 27, 6817–6833.
  • Tsumagari, K. et al., Epigenetics of a tandem DNA repeat: chromatin DNaseI sensitivity and opposite methylation changes in cancers. Nucleic Acids Res., 2008, 36, 2196–2207.
  • Choi, S. H. et al., Changes in DNA methylation of tandem DNA repeats are different from interspersed repeats in cancer. Int. J. Cancer, 2009, 125, 723–729.
  • Tilman, G., Loriot, A., Van Beneden, A., Arnoult, N., LondoñoVallejo, J. A., De Smet, C. and Decottignies, A., Subtelomeric DNA hypomethylation is not required for telomeric sister chromatid exchanges in ALT cells. Oncogene, 2009, 28, 1682–1693.
  • Oh, B. K., Um, T. H., Choi, G. H. and Park, Y. N., Frequent changes in subtelomeric DNA methylation patterns and its relevance to telomere regulation during human hepatocarcinogenesis. Int. J. Cancer, 2011, 128, 857–868.
  • Lee, M. E., Rha, S. Y., Jeung, H. C., Chung, H. C. and Oh, B. K., Subtelomeric DNA methylation and telomere length in human cancer cells. Cancer Lett., 2009, 281, 82–91.

Abstract Views: 239

PDF Views: 77




  • Maintaining the Telomere and its Implication in Cancer

Abstract Views: 239  |  PDF Views: 77

Authors

Satish S. Poojary
Department of Molecular and Human Genetics, Centre for Genomics, Jiwaji University, Gwalior 474 011, India
Pramod Kumar Tiwari
Department of Molecular and Human Genetics, Centre for Genomics, Jiwaji University, Gwalior 474 011, India

Abstract


Genomic instability has been proposed as one of the emerging hallmarks of cancer. However, molecular mechanisms which cause genomic or chromosomal instability still elude us in various cancers. One of the causes for this genomic instability is dysfunction of the telomere. Telomere dysfunction is associated with an increased risk for different cancers, which results, in principle, due to telomere shortening and loss of telomeric proteins which caps and guard telomeres to distinguish it from double-stranded breaks. In this review, we highlight existing understanding of telomeres, telomerase and their role in cancer progression.

Keywords


Cancer Progression, Epigenetics, Genomic Instability, Telomere Dysfunction, Telomerase.

References





DOI: https://doi.org/10.18520/cs%2Fv111%2Fi7%2F1166-1172