Open Access
Subscription Access
Antibacterial Metabolites from the Sri Lankan Demosponge-Derived Fungus, Aspergillus flavipes
Sri Lankan sponge-derived fungi are an unexploited resource awaiting exploration for drug leads. Three fungi from the internal tissues of a demosponge collected on the west coast of Sri Lanka were isolated and antimicrobial activities of their crude extracts were evaluated. Aspochalasin B, D, M, asperphenamate and 4-OMe asperphenamate were isolated from the crude ethyl acetate extract of the fungus Aspergillus flavipes. Aspochalasin B and D showed antibacterial activities against Bacillus subtilis (MIC, 16 and 32 μg ml-1 respectively), Staphylococcus aureus and MRSA (MIC, 32 μg ml-1). The results highlight the potential of isolating bioactive secondary metabolites from Sri Lankan sponge-derived fungi.
Keywords
Aspergillus flavipes, Aspochalasin, Asperphenamate, Demosponge, Marine.
User
Font Size
Information
- Chin, Y. W., Balunas, M. J., Chai, H. B. and Kinghorn, A. D., Drug discovery from natural sources. AAPS J., 2006, 8, 239–253.
- Proksch, P., Putz, A., Ortlepp, S., Kjer, J. and Bayer, M., Bioactive natural products from marine sponges and fungal endophytes. Phytochem. Rev., 2010, 9, 475–489.
- Blunt, J. W., Copp, B. R., Keyzers, R. A., Munro, M. H. G. and Prinsep, M. R., Marine natural products. Nat. Prod. Rep., 2014, 31, 160.
- Li, Q. and Wang, G., Diversity of fungal isolates from three Hawaiian marine sponges. Microbiol. Res., 2009, 164, 233–241.
- Bugni, T. S. and Ireland, C. M., Marine-derived fungi: a chemically and biologically diverse group of microorganisms. Nat. Prod. Rep., 2004, 21, 143–163.
- Faulker, D. J., Marine natural products. Nat. Prod. Rep., 2001, 18, 1–49.
- de Silva, E. D., Schwartz, R. E., Scheuer, P. J. and Shoolery, J. N., Srilankenyne, a new metabolite from the Sea Hare Aplysia oculifera. J. Org. Chem., 1983, 48, 395–396.
- de Silva E. D., Morris S. A., Miao S., Dumdei, E. and Andersen R. J., Terpenoid metabolites from skin extracts of four Sri Lankan Nudibranchs in the Genus Chromodoris. J. Nat. Prod., 1991, 54, 993–997.
- Gulavita, N. K., Scheuer, P. J. and de Silva E. D., Antimicrobial constituents of a sponge-nudibranch pair from Sri Lanka. In Bioactive Compounds from Marine Organisms (eds Thompson, M., Sarojini, R. and Nagabhushanam, R.), Oxford and IBH Publishing Co. Pvt. Ltd, New Delhi, 1991, pp. 229–233.
- Bowden, B. F., Coll, J. C., de Costa, M. S. L., Mackay, M. F., Mahendran, M., de Silva, E. D. and Wills, R. H., The structure determination of a new cembranoid diterpene from the soft coral Lobophytum cristigalli (Coelenterata, Octocorollia, Alcyonacea). Aust. J. Chem., 1984, 37, 545–552.
- National Committee for Clinical Laboratory Standards. 2003. Performance standards for antimicrobial susceptibility testing twelfth information supplement, M100-S12. Wayne (PA).
- Kariyawasam, G. K., Mithrasen, Y. J. P. K., Fernando, T. H. P. S., Wijesundera, R. L. C. and Wijesundera, W. S. S., A new cost effective method for extracting genomic DNA from fungi. Abstracts of papers, 5th Annual sessions, Institute of Biochemistry Molecular Biology and Biotechnology, Colombo; 27 April 2012. Colombo: Institute of Biochemistry, Molecular Biology and Biotechnology, vol. 5, p. 49.
- National Committee for Clinical Laboratory Standards (NCCLS). Performance standards for antimicrobial susceptibility tests, Approved Standard, document M2-A8, Wayne (PA), 2002, 8th edn.
- Lin, Z., Zhu, T., Wei, H., Zhang, G., Wang, H. and Gu, Q., Spicochalasin A and new aspochalasins from the marine-derived fungus Spicaria elegans. Eur. J. Org. Chem., 2009, 18, 3045–3051.
- Keller-Schierlein, W. and Kupfer, E., Metabolites of microorganisms. The Aspochalasins A, B, C, and D. Helv. Chim. Acta., 1979, 62, 1501–1524.
- Tomikawa, T., Shin-ya, K., Kinoshita, T., Miyajima, A., Seto, H. and Hayakawa, Y., Selective cytotoxicity and stereochemistry of aspochalasin D. J. Antibiot., 2001, 54, 379–381.
- Catalan, C. A. N., de Heluani, C. S., Kotowicz, C., Gedris, T. E. and Herz, W., A linear sesterterpene, two squalene derivatives and two peptide derivatives from Croton hieronymi. Phytochemistry, 2003, 64, 625–629.
- Zheng, C. et al., Bioactive phenylalanine derivatives and cytochalasins from the soft coral-derived fungus, A. elegans. Mar. Drugs, 2013, 11, 2054–2068.
- Kohlmeyer, J. and Kohlmeyer, E., Marine Mycology: The Higher Fungi, Academic Press, New York, 1979.
- Debbab, A., Aly, A. H. and Proksch, P., Mangrove derived fungal endophytes – a chemical and biological perception. Fungal Divers., 2013, 61, 1–27.
- Jiang, T., Li, T., Li, J., Fu, H., Pei, Y. and Lin, W., Cerebroside analogues from marine-derived fungus Aspergillus flavipes. J. Asian Nat. Prod. Res., 2004, 6, 249–257.
- Nagia, M. M. S., El-Metwally, M. M., Shaaban, M., El-Zalabani, S. M. and Hanna, A. G., Four butyrolactones and diverse bioactive secondary metabolites from terrestrial Aspergillus flavipes MM2: isolation and structure determination. Org. Med. Chem. Lett., 2012, 2, 9.
- Bai, Z. et al., New meroterpenoids from the endophytic fungus Aspergillus flavipes AIL8 derived from the mangrove plant Acanthus ilicifolius. Mar. Drugs, 2015, 13, 237–248.
- Laurence, C. R., Dissertation: Biologically active secondary metabolites of the fungus, Aspergillus flavipes. The Ohio State University, UMI Dissertation Publishing, US, 1993, p. 362.
- Sanchez, J. F., Somoza, A. D., Keller, N. P. and Wang, C. C. C., Advances in Aspergillus secondary metabolite research in the post-genomic era. Nat. Prod. Rep., 2012, 29, 351–371.
- Gebhardt, K. et al., Aspochalamins A–D and aspochalasin Z produced by the endosymbiotic fungus Aspergillus niveus LU 9575. J. Antibiot., 2004, 57, 707–714.
- Flashner, M., Rasmussen, J., Patwardhan, B. H. and Tanenbaum, S. T., Structural features of cytochalasins responsible for Grampositive bacterial inhibitions. J. Antibiot., 1982, 35, 1345–1350.
- Pomini, A. M., Ferreira, D. T., Braz-Filho, R., Saridakis, H. O., Schmitz, W., Ishikawa, N. K. and Faccione, M., Antioxidant activity of compounds isolated from the ischolar_main woods of Erythrina droogmansiana. Nat. Prod. Res., 2006, 20, 537–541.
- Yaya, A. J. G., Feumba, R. D., Emmanuel, T., Tchinda, A. T., Frederich, M., Oben, J. and Mbafor, J. T., Antioxidant activity of compounds Isolated from the ischolar_main woods of Erythrina droogmansiana. Int. J. Pharm. Sci. Drug Res., 2014, 6, 160–163.
- Yuan, L., Wang, J. H. and Sun, T. M., Total synthesis and anticancer activity studies of the stereoisomers of asperphenamate and patriscabratine. Chinese Chem. Lett., 2010, 21, 155–158.
Abstract Views: 408
PDF Views: 115