The PDF file you selected should load here if your Web browser has a PDF reader plug-in installed (for example, a recent version of Adobe Acrobat Reader).

If you would like more information about how to print, save, and work with PDFs, Highwire Press provides a helpful Frequently Asked Questions about PDFs.

Alternatively, you can download the PDF file directly to your computer, from where it can be opened using a PDF reader. To download the PDF, click the Download link above.

Fullscreen Fullscreen Off


Genetic recombination and high rate of mutations in the HIV-1 genome increase the diversity of HIV-1, which allows viruses to escape more easily from host immune system or develop resistance for antiretroviral drugs. Consequently, it is indispensable to devise an effective method for recognition of recombination in HIV-1 strains. This article presents ensemble models of artificial neural network for the classification of recombinant and non-recombinant sequences of HIV-1 genome. We have evaluated the performance of these ensemble models using different classification measurements like specificity, sensitivity and classification accuracy. Furthermore, model performance was measured on receiver operating curve and using calibration graph. High classification accuracy up to 93.43% was achieved on tenfold cross validation.

Keywords

Artificial Neural Network, Bagging, Boosting, Ensemble, HIV-1 Genome.
User
Notifications
Font Size