We present InSAR observations of the co-seismic deformation caused by the Mw 7.8 Gorkha, Nepal earthquake. Analysis of Sentinel-1 data revealed about 100 x 100 sq. km surface deformation with ~1 m upliftment near Kathmandu, and ~0.8 m subsidence towards north along the line of sight of the satellite. The maximum deformation is observed about 40 km east-southeast of the epicentre, suggesting eastward propagation of the rupture. Elastic dislocation modelling revealed that the overall rupture occurred on a 170 km long, 60 km wide fault along the strike (286°) and dipping north (dip = 15°) with large amount of slip (4.5 m) confined to the centre (95 x 22 sq. km) and less slip (0.25 m) on the surrounding part of the fault plane. The corresponding moment magnitude is Mw 7.75. The area, depth and dip of the modelled fault plane are fairly consistent and overlap with the location of mid-crustal ramp in the Main Himalayan Thrust. We infer that the earthquake was possibly caused by the release of inter-seismic strain energy accumulated in the environs of mid-crustal ramp due to plate boundary forces.
Keywords
Co-Seismic Deformation, Gorkha, Nepal Earthquake, Synthetic Aperture Radar Interferometry, Source Model.
User
Font Size
Information