The PDF file you selected should load here if your Web browser has a PDF reader plug-in installed (for example, a recent version of Adobe Acrobat Reader).

If you would like more information about how to print, save, and work with PDFs, Highwire Press provides a helpful Frequently Asked Questions about PDFs.

Alternatively, you can download the PDF file directly to your computer, from where it can be opened using a PDF reader. To download the PDF, click the Download link above.

Fullscreen Fullscreen Off


Bus travel times are prone to high variability, especially in countries that lack lane discipline and have heterogeneous vehicle profiles. This leads to negative impacts such as bus bunching, increase in passenger waiting time and cost of operation. One way to minimize these issues is to accurately predict bus travel times. To address this, the present study used a model-based approach by incorporating mean and variance in the formulation of the model. However, the accuracy of prediction did not improve significantly and hence a machine learning-based approach was considered. Support vector machines were used and prediction was done using v-support vector regression with linear kernel function. The proposed scheme was implemented in Chennai using data collected from public transport buses fitted with global positioning system. The performance of the proposed method was analysed along the route, across subsections and at bus stops. Results show a clear improvement in performance under high variance conditions.

Keywords

Bus Travel Time, High Variance Conditions, Prediction Accuracy, Support Vector Machines.
User
Notifications
Font Size