Open Access
Subscription Access
Estimating Biological Parameters of a Coupled Physical-Biological Model of the Indian Ocean Using Polynomial Chaos
A statistical emulator technique, namely polynomial chaos, has been used to estimate two time-dependent biological parameters of a coupled physical-biological model of the Indian Ocean. This has been achieved by minimizing a distance function representing misfit between model simulated and satellite-derived surface chlorophyll. First, the parameters have been assumed to be constant in time and optimized values have been found by minimizing a time-averaged distance function. Since no significant improvement in model simulation has been found using a fixed set of optimum parameters, minimization has been carried out daily, assuming the parameters to be time-dependent. Emulation with this set of parameters has led to a significant improvement in the simulated surface chlorophyll. Smoothing of the parameters with singular spectrum analysis has caused less noisy simulations, at the cost of increasing the model data misfit. Time-varying parameters have been found to be more suitable for the hindcast of daily averaged chlorophyll both in the Arabian Sea and the Bay of Bengal.
Keywords
Coupled Physical–Biological Model, Distance Function, Polynomial Chaos, Surface Chlorophyll.
User
Font Size
Information
Abstract Views: 292
PDF Views: 113