The present study focuses on the green synthesis of nitrogen-doped carbon dots (C.dots) from sesame seeds using microwave pyrolysis method. The C.dots obtained were characterized and extensively studied using transmission electron microscopy (TEM), UV/ visible spectroscopy, fluorescence spectroscopy and Fourier transform infra-red spectroscopy (FTIR) techniques. The results indicated the presence of highly fluorescent, aqueous soluble and significantly photostable C.dots with a quantum yield of 8.02%. The average size distributions of C.dots were found to be 5 nm. These C.dots were effectively applied as a selective sensor for Fe(III) as the fluorescence intensity was significantly quenched with increasing metal concentrations. The limit of detection (LOD) was found to be 2.56 M of Fe(III). This study demonstrates a low cost, environmental friendly and waste recyclable synthetic method for preparation of C.dots and its application as a selective Fe(III) sensor.
Keywords
Carbon Dots, Fluorescence, Sesame Seeds, Microwave Pyrolysis, Metal Ions, Quenching.
User
Font Size
Information