The PDF file you selected should load here if your Web browser has a PDF reader plug-in installed (for example, a recent version of Adobe Acrobat Reader).

If you would like more information about how to print, save, and work with PDFs, Highwire Press provides a helpful Frequently Asked Questions about PDFs.

Alternatively, you can download the PDF file directly to your computer, from where it can be opened using a PDF reader. To download the PDF, click the Download link above.

Fullscreen Fullscreen Off


Benzenoids are organic pollutants emitted mainly by traffic and industrial sources. Here, using a combination of on-line in situ PTR-MS measurements of several benzenoids and methyl cyanide (a biomassburning tracer), satellite remote sensing data of fire counts and back trajectory of air masses at a site in Mohali, we show that massive amounts of benzenoids are released from post-harvest paddy residue burning. Two periods, one that was not influenced by paddy residue burning (period 1, 18 : 00-03 : 30 IST; 5-6 October 2012) and another which was strongly influenced by paddy residue burning (period 2, 18 : 00- 03 : 30 IST; 3-4 November 2012) were chosen to assess normal and perturbed levels. Peak values of 3830 ppb CO, 100 ppb NOx, 40 ppb toluene, 16 ppb benzene, 24 ppb for sum of all C-8 benzenoids and 13 ppb for sum of all C-9 benzenoids were observed during period 2 (number of measurements in period 2 = 570) with the average enhancements in benzenoid levels being more than 300%. The ozone formation potential of benzenoids matched that of CO, with both contributing 5 ppb/h each. Such high levels of benzenoids for 1-2 months in a year aggravate smog events and can enhance cancer risks in northwestern India.

Keywords

Atmospheric Chemistry, Benzene, Cancer, Methyl Cyanide.
User
Notifications
Font Size