Open Access Open Access  Restricted Access Subscription Access

Macropore Flow as a Groundwater Component in Hydrologic Simulation:Modelling, Applications and Results


Affiliations
1 Department of Civil Engineering, GCT, Coimbatore 641 013, India
2 Department of Agricultural Engineering, AC&RI, Madurai 625 104, India
 

Macropore flow carries water from the soil surface to deeper profile or groundwater, bypassing the intermediate soil profile. The phenomenon is ubiquitous and not rare. A theoretical framework of this flow has not been perfected so far, but ignoring this process may lead to incomplete conceptualization of soil-water flow. The macropore flow has been modelled based on observed data on morphometry, macropore size distribution and fractal dimensions of soil voids and stain patterns, and incorporated in the Watershed Processes Simulation (WAPROS) model. The performance of WAPROS model was evaluated to be good (NSE - hourly; daily = 0.8578; 0.9020), when applied to a real watershed. The sensitivity of macropore flow submodel showed that the adjustment factor was linearly related to macropore flow. Simulations were performed for five types of soil, namely sandy loam, sandy clay loam, sandy clay, clay loam and silty clay loam (A, B, C, D and E respectively). The values of macroporosity factors and fractal dimensions generated for the five types of soil have been presented. The model generated data for A, B, C, D and E soil types were: the number of macropores: 379, 3074, 3412, 153 and 0; the macropore flow (mm): 1.5121, 9.3667, 15.1728, 4.4055 and 0; the average pore flow (mm/pore): 0.0040, 0.0030, 0.0044, 0.0287 and 0; and the macropore flow to base flow ratio: 0.0055, 0.0474, 0.1908, 0.2759 and 0. The modelling methodology gives encouraging results. The model can be updated as and when better equations are made available.

Keywords

Groundwater, Hydrologic Simulation, Macropore Flow Model, Sensitivity, Soil Types.
User
Notifications
Font Size


  • Macropore Flow as a Groundwater Component in Hydrologic Simulation:Modelling, Applications and Results

Abstract Views: 385  |  PDF Views: 173

Authors

M. Ranjit Kumar
Department of Civil Engineering, GCT, Coimbatore 641 013, India
T. Meenambal
Department of Civil Engineering, GCT, Coimbatore 641 013, India
V. Kumar
Department of Agricultural Engineering, AC&RI, Madurai 625 104, India

Abstract


Macropore flow carries water from the soil surface to deeper profile or groundwater, bypassing the intermediate soil profile. The phenomenon is ubiquitous and not rare. A theoretical framework of this flow has not been perfected so far, but ignoring this process may lead to incomplete conceptualization of soil-water flow. The macropore flow has been modelled based on observed data on morphometry, macropore size distribution and fractal dimensions of soil voids and stain patterns, and incorporated in the Watershed Processes Simulation (WAPROS) model. The performance of WAPROS model was evaluated to be good (NSE - hourly; daily = 0.8578; 0.9020), when applied to a real watershed. The sensitivity of macropore flow submodel showed that the adjustment factor was linearly related to macropore flow. Simulations were performed for five types of soil, namely sandy loam, sandy clay loam, sandy clay, clay loam and silty clay loam (A, B, C, D and E respectively). The values of macroporosity factors and fractal dimensions generated for the five types of soil have been presented. The model generated data for A, B, C, D and E soil types were: the number of macropores: 379, 3074, 3412, 153 and 0; the macropore flow (mm): 1.5121, 9.3667, 15.1728, 4.4055 and 0; the average pore flow (mm/pore): 0.0040, 0.0030, 0.0044, 0.0287 and 0; and the macropore flow to base flow ratio: 0.0055, 0.0474, 0.1908, 0.2759 and 0. The modelling methodology gives encouraging results. The model can be updated as and when better equations are made available.

Keywords


Groundwater, Hydrologic Simulation, Macropore Flow Model, Sensitivity, Soil Types.

References





DOI: https://doi.org/10.18520/cs%2Fv112%2Fi06%2F1197-1207