The PDF file you selected should load here if your Web browser has a PDF reader plug-in installed (for example, a recent version of Adobe Acrobat Reader).

If you would like more information about how to print, save, and work with PDFs, Highwire Press provides a helpful Frequently Asked Questions about PDFs.

Alternatively, you can download the PDF file directly to your computer, from where it can be opened using a PDF reader. To download the PDF, click the Download link above.

Fullscreen Fullscreen Off


Macropore flow carries water from the soil surface to deeper profile or groundwater, bypassing the intermediate soil profile. The phenomenon is ubiquitous and not rare. A theoretical framework of this flow has not been perfected so far, but ignoring this process may lead to incomplete conceptualization of soil-water flow. The macropore flow has been modelled based on observed data on morphometry, macropore size distribution and fractal dimensions of soil voids and stain patterns, and incorporated in the Watershed Processes Simulation (WAPROS) model. The performance of WAPROS model was evaluated to be good (NSE - hourly; daily = 0.8578; 0.9020), when applied to a real watershed. The sensitivity of macropore flow submodel showed that the adjustment factor was linearly related to macropore flow. Simulations were performed for five types of soil, namely sandy loam, sandy clay loam, sandy clay, clay loam and silty clay loam (A, B, C, D and E respectively). The values of macroporosity factors and fractal dimensions generated for the five types of soil have been presented. The model generated data for A, B, C, D and E soil types were: the number of macropores: 379, 3074, 3412, 153 and 0; the macropore flow (mm): 1.5121, 9.3667, 15.1728, 4.4055 and 0; the average pore flow (mm/pore): 0.0040, 0.0030, 0.0044, 0.0287 and 0; and the macropore flow to base flow ratio: 0.0055, 0.0474, 0.1908, 0.2759 and 0. The modelling methodology gives encouraging results. The model can be updated as and when better equations are made available.

Keywords

Groundwater, Hydrologic Simulation, Macropore Flow Model, Sensitivity, Soil Types.
User
Notifications
Font Size