Open Access
Subscription Access
An Insight into the Putative Role of Victuals Like Honey and its Polyphenols in Breast Cancer
Diet plays a crucial role in cancer advancement as well as prevention. Breast cancer is the second leading cause of cancer death among women. Recent research links breast cancer with diet and some evidence for the preventive effect of diet against breast cancer was also documented. The growth of cancer cells is influenced by natural sweetener honey and its multitude of phenolic phytochemical components. Honey has been used medicinally by ancient Greeks and Egyptians and also traditionally exploited in Ayurveda and Chinese medicine. In this paper, the anti-cancer properties of honey and its phytochemical's action against breast cancer have been summarized. They result in apoptosis by enhancing reactive oxygen species level, activating mitochondrial pathway, initiation of pro-apoptotic and anti-apoptotic proteins, induction of p53 pathway that finally cause DNA fragmentation. However, there is a necessity for more proteomic and genetic-based experiments to understand its molecular mechanism to promote honey and its phenolic markers as plausible candidates for breast cancer treatment. Further, there is a need for quality check of honey available in the market, which warrants significant investigation by researchers in the food industry to ensure their attributes.
Keywords
Anti-Cancer, Apoptosis, Breast Cancer, Honey, Phenolic.
User
Font Size
Information
- Defining Cancer. National Cancer Institute; available at: https://www.cancer.gov/
- Bernard, S. and Christopher, P., World Cancer Report, IARC Nonserial Publication. WHO Press, 2014.
- Breast Cancer Facts and Figures. American Cancer Society, 2014; http://www.cancer.org/research/cancerfactsstatistics/breastcancerf actsfigures2014/
- Gaffield, M. E., Culwell, K. R. and Ravi, A., Oral contraceptives and family history of breast cancer. Contraception, 2009, 80(4), 372–380.
- DNA to Diversity: Molecular Genetics and the Evolution of Animal Design, Blackwell, Oxford, 2001, 2nd edn.
- Lof, M. and Weiderpass, E., Impact of diet on breast cancer risk. Curr. Opin. Obstet. Gynecol., 2009, 21(1), 80–85.
- Tonelli, D., Gattavecchia, E., Ghini, S., Porrini, C., Celli, G. and Mercuri, A. M., Honey bees and their products as indicators of environmental radioactive pollution. J. Radioanal. Nucl. Chem., 1990, 141(2), 427–436.
- Spence, J., The Cartoon History of the Universe II from the springtime of China to the Fall of Rome-Gonick, Broadway Books, New York, 1994, pp. 15–16.
- Altman, N., The Honey Prescription: The Amazing Power of Honey as Medicine, Inner Traditions/Bear & Co., 2010, pp. 60–62.
- Jaganathan, S. K. and Mandal, M., Antiproliferative effects of honey and of its polyphenols: a review. BioMed. Res. Int., 2009, 830616, 1–13; http://dx.doi.org/10.1155/2009/830616.
- Saunders, C. and Jassal, S., Breast Cancer, Oxford University Press, Oxford, 2009, 1st edn, p. 13; https://global.oup.com/academic/product/breast-cancer-9780199558698?cc=my〈=en&
- ‘Genome Dictionary’; Retrieved 6 June 2015.
- Duncan, J. A., Reeves, J. R. and Cooke, T. G., BRCA1 and BRCA2 proteins: roles in health and disease. Mol. Pathol., 1998, 51(5), 237–247.
- Dennis, J., Ghadirian, P. and Little, J., Alcohol consumption and the risk of breast cancer among BRCA1 and BRCA2 mutation carriers. Breast, 2010, 19(6), 479–483.
- Sotiriou, C. and Pusztai, L., Gene-expression signatures in breast cancer. N. Engl. J. Med., 2009, 360(8), 790–800.
- Lind, M. J., Principles of cytotoxic chemotherapy. Medicine, 2008, 36(1), 19–23.
- Corrie, P. G. and Pippa, G., Cytotoxic chemotherapy: clinical aspects. Medicine, 2008, 36(1), 24–28.
- David, W. B., The chemical composition of honey. J. Chem. Educ., 2007, 84(10), 1643–1647.
- Yao, L., Jiang, Y. M., D’Arcy, B., Singanosung, R., Datta, N., Caffin, N. and Raymont, K., Quantitative high performance liquid chromatography analyses of flavonoids in Australian Eucalyptus honeys. J. Agric. Food Chem., 2004, 52(2), 210–214.
- Dimitrova, B., Gevrenova, R. and Anklam, E., Analysis of phenolic acids in honeys of different floral origin by solid-phase extraction and high-performance liquid chromatography. Phytochem. Anal., 2007, 18, 24–32.
- Jaganathan, S. K. and Mandal, M., Involvement of non-protein thiols, mitochondrial dysfunction, reactive oxygen species and p53 in honey-induced apoptosis. Invest. New Drugs, 2010, 28, 624–633.
- Ahmed, S. and Othman, N. H., Review of the medicinal effects of Tualang honey and a comparison with manuka honey. Malays. J. Med. Sci., 2013, 20(3), 6–13.
- Socha, R., Juszczak, L., Pietrzyk, S. and Fortuna, T., Antioxidant activity and phenolic composition of herbhoneys. Food. Chem., 2009, 113(2009), 568–574.
- Yao, L., Datta, N., Tomás- Barberán, F. A., Ferreres, F., Martos, I. and Singanosung, R., Flavonoids, phenolic acids and abscicic acid in Australian and New Zealand Leptospermum honeys. Food. Chem., 2003, 81, 159–168.
- Ioannis, K., Karabagias, Elpida, Dimitriou, Stavros and Kontakos, Michael, G. Kontominas, Phenolic profile, colour intensity, and radical scavenging activity of Greek unifloral honeys. Eur. Food. Res. Technol., 2016, 242(8), 1–10.
- Lachman, J., Orsák, M., Hejtmánková, A. and Kovářová, E., Honey and health 155 Evaluation of antioxidant activity and total phenolics of selected Czech honeys. LWT-Food. Sci. Technol., 2010, 43(1), 52–58.
- Aljadi, A. M. and Kamaruddin, M. Y., Evaluation of the phenolic contents and antioxidant capacities of two Malaysian floral honeys. Food Chem., 2004, 85, 513–518.
- Ferreira, I. C. F. R., Aires, E., Barreira, J. C. M. and Estevinho, L. M., Antioxidant activity of Portuguese honey samples: different contributions of the entire honey and phenolic extract. Food Chem., 2009, 114, 1438–1443.
- Fatimah Buba, Abubakar, Gidado and Aliyu, Shugaba, Analysis of biochemical composition of honey samples from North-East Nigeria. Biochem. Anal. Biochem., 2013, 2(3), 1000139– 1000146.
- Cossentini, M., Ferreres, F. and Tomás-Barberán, F. A., Flavonoid composition of tunisian honeys and propolis. J. Agric. Food Chem., 1997, 45, 2824–2829.
- Jaganathan, S. K., Can flavonoids from honey alter multidrug resistance? Med. Hypo., 2011, 76, 535–537.
- Jaganathan, S. K. and Mandal, M., Honey constituents and their apoptotic effect in colon cancer cells. J. ApiProd. ApiMed. Sci., 2009, 1(2), 29–36.
- Abdulaziz, S., Alqarni., Ayman, A. Owayss, Awad, A. Mahmoud, Physicochemical characteristics, total phenols and pigments of national and international honeys in Saudi Arabia. Arab. J. Chem., 2016, 9(1), 114–120.
- Schramm, D. D., Karim, M., Schrader, H. R., Holt, R. R., Cardetti, M. and Keen, C. L., Honey with high levels of antioxidants can provide protection to healthy human subjects. J. Agric. Food Chem., 2003, 51, 1732–1735.
- Manach, C., Scalbert, A., Morand, C. H., Rémesy, C. H. and Jimenez, L., Polyphenols: food sources and bioavailability. Am. J. Clin. Nutr., 2004, 79, 727–747.
- Manach, C., Williamsom, G., Morand, C. H., Scalbert, A. and Rémesy, C. H., Bioavailability and bioefficacy of polyphenols in humans. I. Review of 97 bioavailability studies. Am. J. Clin. Nutr., 2005, 81, 230S–242S.
- Scalbert, A. and Williamson, G., Dietary intake and bioavailability of polyphenols. J. Nutr., 2000, 130, 2073–2085.
- Alvarez-Suarez, J. M., Giampieri, F. and Battino, M., Honey as a source of dietary antioxidants structures, bioavailability and evidence of protective effects against human chronic diseases. Curr. Med. Chem., 2013, 20(5), 621–638.
- Tallarida, R. J., Drug synergism: its detection and applications. J. Pharmacol. Exp. Ther., 2001, 298, 865–872.
- Choi, E. J. and Kim, G. H., 5-Fluorouracil combined with apigenin enhances anti-cancer activity through induction of apoptosis in humanbreast cancer MDA-MB-453 cells. Oncol. Rep., 2009, 22(6), 1533–1537.
- Ayşe, A. K., Ayşe, B., Miris, D., Didem, T. C., İrfan, D. and Hasan, V. G., Evaluation of effects of Quercetin (3, 3, 4, 5, 7pentohidroxyflavon) on apoptosis and telomerase enzyme activity in MCF-7 and NIH-3T3 cell lines compared with Tamoxifen. Balkan. Med. J., 2011, 28, 293–299.
- Huang, C., Lee, S. Y., Lin, C. L., Tu, T. H., Chen, L. H., Chen, Y. J. and Huang, H. C., Co-treatment with quercetin and 1,2,3,4,6-penta-O-galloyl- -D-glucose causes cell cycle arrest and apoptosis inhuman breast cancer MDA-MB-231 and AU565 cells. J. Agric. Food. Chem., 2013, 61(26), 6430–6445.
- Takahiro, E., Naoto, T., Hiroshi, N., Tadao, K., Kiyotaka, N. and Teruo, M., Synergistic inhibition of cancer cell proliferation with a combination of d-tocotrienol and ferulic acid. Biochem. Biophys. Res. Commun., 2014, 453(3), 606–611.
- Henry, P. C., Phillip, J. D. and Grace, C. Y., Dietary flavonols quercetin and kaempferol are ligands of the aryl hydrocarbon receptor that affect CYP1A1 transcription differentially. Biochem. J., 1999, 340, 715–722.
- Kanokkarn, P., Supachai, Y., Songyot, A. and Pornngarm, L., Inhibition of MMP-3 activity and invasion of the MDA-MB-231 human invasive breast carcinoma cell line by bioflavonoids. Acta Pharmacol. Sin., 2009, 30(8), 1169–1176.
- Margaret, L. A., Simone, V. D. W. and Rod, J., Synergistic Antiproliferative action of the flavonols quercetin and kaempferol in cultured human cancer cell lines. In vivo, 2005, 19, 69–76.
- Anna, V. T., Mari, J., Ioanna, C., Konstadia, G., Tiina, T., Vesa, V. and Paraskevi, M., Bioactivity of Greek honey extracts on breast cancer (MCF-7), prostate cancer (PC-3) and endometrial cancer (Ishikawa) cells: profile analysis of extracts. Food Chem., 2009, 116, 702–708.
- Mervat, M. A. and El-Gendy, In vitro, evaluation of medicinal activity of Egyptian honey from different floral sources as anticancer and antimycotic infective agents. J. Micro. Biochem. Technol., 2010, 2(5), 118–125.
- Jaganathan, S. K., Mandal, M. S., Saikat, K. J., Soumen, D. and Mandal, M., Studies on the phenolic profiling, anti-oxidant and cytotoxic activity of Indian honey: in vitro evaluation. Nat. Prod. Res., 2010, 24(14), 1295–1306.
- Jaganathan, S. K., Mondhe, D., Wani, Z. A., Pal, H. C. and Mandal, M., Effect of Honey and Eugenol on Ehrlich ascites and solid carcinoma. J. Biomed. Biotechnol., 2010, 1–5.
- Fauzi, A. N., Norazmi, M. N. and Yaacob, N. S., Tualang honey induces apoptosis and disrupts the mitochondrial membrane potential of human breast and cervical cancer cell lines. Food Chem. Toxicol., 2011, 49(4), 871–878.
- Yaacob, N. S., Nengsih, A. and Norazmi, M. N., Tualang honey promotes apoptotic cell death induced by tamoxifen in breast cancer cell lines. Evid. Based. Complement. Alternat. Med., 2013, 989841, 1–9; http://dx.doi.org/10.1155/2013/989841.
- Yaacob, N. S. and Ismail, N. F., Comparison of cytotoxicity and genotoxicity of 4-hydroxytamoxifen in combination with Tualang honey in MCF-7and MCF-10A cells. BMC Complement. Altern. Med., 2014, 14, 106–115.
- Saxena, S., Kumar, D., Maurya, G. S. and Sharma, A., Effect of radiation hygienization of honey on its health protective properties. Food. Biosci., 2014, 8, 14–20.
- Kadir, E. A., Sulaiman, S. A., Yahya, N. K. and Othman, N. H., Inhibitory effects of Tualang honey on experimental breast cancer in rats: a preliminary study. Asian. Pac. J. Cancer. Prev., 2013, 14(4), 2249–2254.
- Orsolić, N., Knezević, A., Sver, L., Terzić, S., Hackenberger, B. K. and Basić, I., Influence of honey bee products on transplantable murine tumours. Vet. Comp. Oncol., 2003, 1(4), 216–226.
- Yin, F., Giuliano, A. E., Law, R. E. and Van, H. A. J., Apigenin inhibits growth and induces G2/M arrest by modulating cyclinCDK regulators and ERK MAP kinase activation in breast carcinoma cells. Anticancer. Res., 2001, 21(1A), 413–420.
- Way, T. D., Kao, M. C. and Lin, J. K., Degradation of HER2/neu by apigenin induces apoptosis through cytochrome c release and caspase-3 activationin HER2/neu-overexpressing breast cancer cells. FEBS. Lett., 2005, 579(1), 145–152.
- Jin, X. Y. and Ren, C. S., Effect and mechanism of apigenin on VEGF expression in human breast cancer cells. Zhonghua. Zhong. Liu. Za Zhi, 2007, 29(7), 495–499.
- Lee, W. J., Chen, W. K., Wang, C. J., Lin, W. L. and Tseng, T. H., Apigenin inhibits HGF-promoted invasive growth and metastasis involving blocking PI3K/Akt pathway and beta 4 integrin function in MDA-MB-231 breast cancer cells. Toxicol. Appl. Pharmacol., 2008, 226(2), 178–191.
- Choi, E. J. and Kim, G. H., Apigenin induces apoptosis through a mitochondria/Caspase-pathway in human breast cancer MDAMB453 cells. J. Clin. Biochem. Nutr., 2009, 44(3), 260–265.
- Choi, E. J. and Kim, G. H., Apigenin causes G(2)/M arrest associated with the modulation of p21(Cip1) and Cdc2 and activates p53-dependent apoptosis pathway in human breast cancer SKBR3 cells. J. Nutr. Biochem., 2009, 20(4), 285–290.
- Seo, H. S. et al., Apigenin induces apoptosis via extrinsic pathway, inducing p53 and inhibiting STAT3 and NFB signaling in HER2-overexpressing breast cancer cells. Mol. Cell. Biochem., 2012, 366(1–2), 319–334.
- Mafuvadze, B., Benakanakere, I. and Hyder, S. M., Apigenin blocks induction of vascular endothelial growth factor mRNA and protein in progestin-treated human breast cancer cells. Menopause., 2010, 17(5), 1055–1063.
- Way, T. D., Kao, M. C. and Lin, J. K., Apigenin induces apoptosis through proteasomal degradation of HER2/neu in HER2/ neu-overexpressing breastcancer cells via the phosphatidylinositol 3-kinase/Akt-dependent pathway. J. Biol. Chem., 2004, 279(6), 4479–4489.
- Seo, S. H., Ku, J. M., Choi, H. S., Woo, J. K., Jang, H. B., Shin, Y. C. and Ko, S. G., Induction of Caspase-dependent Apoptosis by Apigenin by inhibiting STAT3 signaling in HER2overexpressing MDA-MB-453 breast cancer cells. Anticancer Res., 2014, 34, 2869–2882.
- Bowen, L., Bin, Z., Yue, Z., Weihong, F., Yuanyuan, L. J., Weiran, Z. and Xuchen, C., Apigenin Induces p53-dependent apoptosis and G2/M arrest in breast cancer T47D cells. Chinese J. Clin. Oncol., 2012, 39(6), 315–317.
- Weiran, Z., Bin, Z., Bowen, L. and Xuchen, C., Apigenin induction of p53-independent apoptosis in MDA-MB-231 breast cancers. Chinese J. Clin. Oncol., 2013, 40(3), 134–139.
- Megan, E. H., Melanie, R. P. C., Leanne, M. D. and David, W. H., Exposure of breast cancer cells to a subcytotoxic dose of apigenin causes growth inhibition, oxidative stress, and hypophosphorylation of Akt. Exp. Mol. Pathol., 2014, 97, 211–217.
- Coral, O., Matko, K., Jing, W., Enrica, M., Krystyna, F. and Owen, A. O. C., Propolis and its active component, caffeic acid phenethyl ester (CAPE), modulate breast cancer therapeutic targets via an epigenetically mediated mechanism of action. J. Cancer. Sci. Ther., 2013, 5(10), 334–342.
- Jayaprakasam, B., Vanisree, M., Yanjun, Z., David, L. D. and Muraleedharan, G. N., Impact of alkyl esters of caffeic and ferulic acids on tumour cell proliferation, cyclooxygenase enzyme and lipid peroxidation. J. Agric. Food Chem., 2006, 54, 5375– 5381.
- Luc, H. B., Nadia, P., Jeremie, D., Benoıt, V., Marc, E. S., Gilles, A. R. and Mohamed, T., Caffeoyl and cinnamoyl clusters with anti-inflammatory and anti-cancer effects: synthesis and structure– activity relationship. New J. Chem., 2009, 33, 1932–1940.
- Qu, X. J. et al., Using caffeoyl pyrrolidine derivative LY52, a potential inhibitor of matrix metalloproteinase-2, to suppress tumour invasion and metastasis. Int. J. Mol. Med., 2006, 18(4), 609–614.
- Bailly, F., Toillon, R. A., Tomavo, O., Jouy, N., Hondermarck, H. and Cotelle, P., Antiproliferative and apoptotic effects of the oxidative dimerization product of methyl caffeate on human breast cancer cells. Bioorg. Med. Chem. Lett., 2013, 23(2), 574–578.
- Omene, C. O., Wu, J. and Frenkel, K., Caffeic acid phenethyl ester (CAPE) derived from propolis, a honeybee product, inhibits growth of breast cancer stem cells. Invest. New. Drugs, 2012, 30(4), 1279–1288.
- Ahn, C. H., Choi, W. C. and Kong, J. Y., Chemosensitizing activity of caffeic acid in multidrug-resistant MCF-7/Dox human breast carcinoma cells. Anticancer Res., 1997, 17(3C), 1913–1917.
- Choi, J. A. et al., Induction of cell cycle arrest and apoptosis in human breast cancer cells by quercetin. Int. J. Oncol., 2001, 19(4), 837–844.
- Choi, E. J., Bae, S. M. and Ahn, W. S., Antiproliferative effects of quercetin through cell cycle arrest and apoptosis in human breast cancer MDA-MB-453 cells. Arch. Pharm. Res., 2008, 31(10), 1281–1285.
- Chien, S. Y. et al., Quercetin-induced apoptosis acts through mitochondrialand caspase-3-dependent pathways in human breastcancer MDA-MB-231 cells. Hum. Exper. Toxicol., 2009, 28(8), 493–503.
- Chou, C. C. et al., Quercetin-mediated cell cycle arrest and apoptosis involving activation of a caspase cascade through themitochondrial pathway in human breast cancer MCF-7 cells. Arch. Pharm. Res., 2010, 33(8), 1181–1191.
- Soyocak, A., Didem, T. C., Ayse, B., Irfan, D., Hasan, V. G., Fezan, S. M. and Ertugrul, C., The association between apoptotic Bak protein and quercetin in breast and colon cancer cell lines. FABAD J. Pharm. Sci., 2009, 34, 83–89.
- Lee, Y. K. and Park, O. J., Involvement of AMPK/mTOR/HIF-1 in anti-cancer control of quercetin in hypoxic MCF-7 cells. Food Sci. Biotechnol., 2011, 20(2), 371–375.
- Zhang, H., Zhang, M., Yu, L., Zhao, Y., He, N. and Yang, X., Antitumour activities of quercetin and quercetin-5,8-disulfonate in human colon and breast cancer cell lines. Food. Chem. Toxicol., 2012, 50(5), 1589–1599.
- Deng, X. H., Song, H. Y., Zhou, Y. F., Yuan, G. Y. and Zheng, F. G., Effects of quercetin on the proliferation of breast cancer cells and expression of survivin in vitro. Exp. Ther. Med., 2013, 6(5), 1155–1158.
- Du, G. et al., Dietary quercetin combining intratumoural doxorubicin injection synergistically induces rejection of establishedbreast cancer in mice. Int. Immuno. Pharmacol., 2010, 10(7), 819–826.
- Zhong, X., Wu, K., He, S., Ma, S. and Kong, L., Effects of quercetin on the proliferation and apoptosis in transplantation tumour of breast cancer in nude mice. Sichuan. Da. Xue. Bao. Yi. Xue. Ban., 2003, 34(3), 439–442.
- Chang, Y. M. and Shen, Y. L., Linalool exhibits cytotoxic effects by activating antitumour immunity. Mol., 2014, 19, 6694–6706.
- Vesna, T. S., Jasna, C. B., Gordana, C., Sonja, D. and Dragana, C. S., Dried bilberry (Vacciniummyrtillus L.) extract fractions as antioxidants and cancer cell growth inhibitors. Food Sci. Technol., 2014, 61(2), 615–621.
- Vidya, N. and Niranjali, D. S., Induction of apoptosis by Eugenol in human breast cancer. Indian J. Exp. Biol., 2011, 49, 871–878.
- Ibtehaj, A. S., Adnane, R. and Abdelilah, A., Eugenol triggers apoptosis in breast cancer cells through E2F1/survivin downregulation. BMC Cancer, 2013, 13, 600–612.
- Guoyi, M., Nurhayat, T., Husnu, C. B., Nese, K., David, S. P., Ikhlas, A. K. and Shabana, I. K., Inhibition of NF-B-mediated transcription and induction of apoptosis in human breast cancer cells by epoxypseudoisoeugenol-2-methyl butyrate. Cancer Chemother. Pharmacol., 2009, 63, 673–680.
- In, L. L., Azmi, M. N., Ibrahim, H., Awang, K. and Nagoor, N. H., 1S-1-acetoxyeugenol acetate: a novel phenylpropanoid from Alpiniaconchigera enhances the apoptotic effects of paclitaxel in MCF-7 cells through NF-B inactivation. Anticancer Drugs, 2011, 22(5), 424–434.
- Hong, T. B., Anizah, R., Thaneswary, Y., Maimunah, A. and Khoo, B. Y., Potential effects of Chrysin on MDA-MB-231 cells. Int. J. Mol. Sci., 2010, 11(3), 1057–1069.
- Yang, B. et al., Chrysin inhibits metastatic potential of human triple-negative breast cancer cells by modulating matrixmetalloproteinase10, epithelial to mesenchymal transition, and PI3K/Akt signaling pathway. J. Appl. Toxicol., 2014, 34(1), 105112.
- Sun, L. P. et al., Chrysin: a histone deacetylase 8 inhibitor with anti-cancer activity and a suitable candidate for the standardization of Chinese Propolis. J. Agric. Food Chem., 2012, 60, 11748–11758.
- Lirdprapamongkol, K. et al., A flavonoid chrysin suppresses hypoxic survival and metastatic growth of mouse breast cancer cells. Oncol. Rep., 2013, 30(5), 2357–2364.
- Zhao, X. C., Tian, L., Cao, J. G. and Liu, F., Induction of apoptosis by 5,7-dihydroxy-8-nitrochrysin in breast cancer cells: the role of reactive oxygen species and Akt. Int. J. Oncol., 2010, 37(5), 1345–1352.
- Xiao, C. Z., Xiao, C. C., Fei, L., Quan, M. F., Ren, K. Q. and Cao, J. G., Regulation of the FOXO3a/Bim signaling pathway by 5,7-dihydroxy-8-nitrochrysin in MDA-MB-453 breast cancer cells. Oncol. Lett., 2013, 5(3), 929–934.
- Huynh, H., Inhibition of estrogen receptor alpha expression and function in MCF-7 cells by kaempferol. J. Cell. Physio., 2004, 198, 197–208.
- Oh, S. M., Kim, Y. P. and Chung, K. H., Biphasic effects of kaempferol on the estrogenicity in human breast cancer cells. Arch. Pharm. Res., 2006, 29(5), 354–362.
- Ajeng, D. et al., A. kaempferol-3-O-rhamnoside isolated from the leaves of Schimawallichii Korth. Inhibits MCF-7 breast cancer cell proliferation through activation of the caspase cascade pathway. Oncol. Lett., 2012, 3(5), 1069–1072.
- Wang, Q., Min, H., Yu, H., Zhang, J. S., Zhou, S. F., Zeng, R. Q. and Yang, X. B., Synthesis, characterization, DNA interaction, and antitumour activities of mixed-ligand metal complexes of kaempferol and 1,10-phenanthroline/2,20-bipyridine. Med. Chem. Res., 2014, 23, 2659–2666.
- Kang, G. Y. et al., Downregulation of PLK-1 expression in kaempferol-induced apoptosis of MCF-7 cells. Eur. J. Pharmacol., 2009, 6(11), 17–21.
- Hao, Q., Zhao, P., Niu, J., Wang, J., Yu, J. and Xue, X., Effect of ferulic acid on proliferation and mechanism in human breast cancer cells. ZhongguoZhong. Yao. ZaZhi., 2010, 35(20), 2752–2755.
- Areti, S., Zoi, P., Evi, L. and Paraskevi, M., Effect of ellagic acid on the expression of human telomerase reverse transcriptase (hTERT) + + transcript in estrogen receptor-positive MCF-7 breast cancer cells. Clin. Biochem., 2009, 42, 1358–1362.
- Zhang, T., Chen, H. S., Wang, L. F., Bai, M. H., Wang, Y. C., Jiang, X. F. and Liu, M., Ellagic acid exerts anti-proliferation effects via modulation of Tgf-/Smad3 signaling in MCF-7 breast cancer cells. Asian. Pac. J. Cancer. Prev., 2014, 15(1), 273–276.
- Neng, W. et al., Ellagic acid, a phenolic compound, exerts antiangiogenesis effects via VEGFR-2 signaling pathway in breast cancer. Breast. Cancer. Res. Treat., 2012, 134(3), 943–955.
- Kim, H. A., Lee, R. A., Moon, B. I. and Choe, K. J., Ellagic acid shows different anti-proliferative effects between the MDA-MB-231 and MCF-7 human breast cancer cell lines. J. Breast Cancer, 2009, 12(2), 85–91.
- Jack, N. L., Rishipal, R. B., Alfred, T., Hiba, A. B. and Robert, T., In vitro anti-proliferative activities of ellagic acid. J. Nutr. Biochem., 2004, 15, 672–678.
- Samer, H. H. A., Mothanna, A. Q., Mohamed, E. Z., Maznah, I. and Mohd, Z. H., Cytotoxicity and antimicrobial activity studies of an ellagic acid-zinc layered hydroxide intercalation compound. Sci. Adv. Mater., 2013, 5(10), 1–10.
- Choi, E. J., Hesperetin induced G1-phase cell cycle arrest in human breast cancer MCF-7 cells: involvement of CDK4 and p21. Nutr. Cancer, 2007, 59(1), 115–119.
- Yong, Y., Joy, W., Boom, K., Xiaohong, F., Haifa, S. and Mauro, F., Hesperetin impairs glucose uptake and inhibits proliferation of breast cancer cells. Cell. Biochem. Funct., 2013, 31(5), 1–10.
- Lan, Y., Franky, L. C., Shiuan, C. and Lai, K. L., The citrus flavononehesperetin inhibits growth of aromatase-expressing MCF-7 tumour in ovariectomized athymic mice. J. Nutr. Biochem., 2012, 23, 1230–1237.
- Fengjuan, L., Simon, C., Cheung, W. H., Franky, L. C., Shiuan, C. and Lai, K. L., The citrus flavononehesperetin prevents letrozoleinduced bone loss in a mouse model of breast cancer. J. Nutr. Biochem., 2013, 24, 1112–1116.
- Hongzhuan, X. et al., Antitumour activity of Chinese propolis in human breast cancer MCF-7 and MDA-MB-231 cells. Evid. Based. Complement. Alternat. Med., 2014, 80120, 11; http://dx.doi.org/10.1155/2014/280120.
- Tessa, J. M., Xinhai, Y. and David, H. S., Growth of a human mammary tumour cell line is blocked by galangin, a naturally occurring bioflavonoid, and is accompanied by down-regulation of cyclins D3, E and A. Breast Cancer Res., 2006, 8(2), 1–11.
- So, F. N., Guthrie, N., Chambers, N. F. and Carroll, K. K., Inhibition of proliferation of estrogen receptor-positive MCF-7 human breast cancer cells by flavonoids in the presence and absence of excess estrogen. Cancer Lett., 1997, 112, 127–133.
Abstract Views: 507
PDF Views: 151