The PDF file you selected should load here if your Web browser has a PDF reader plug-in installed (for example, a recent version of Adobe Acrobat Reader).

If you would like more information about how to print, save, and work with PDFs, Highwire Press provides a helpful Frequently Asked Questions about PDFs.

Alternatively, you can download the PDF file directly to your computer, from where it can be opened using a PDF reader. To download the PDF, click the Download link above.

Fullscreen Fullscreen Off


Sequestration of carbon through forests is an important aspect in global climate change mitigation. Assessment of carbon in forests using remote sensing and GIS tools is one of the most important aspects of rapid and verifiable methodologies. A number of studies have shown the utility of spectral (vegetation) indices like NDVI in the assessment of forest carbon. However, there are limitations to this approach. The mountainous topography and high biodiversity affect the spectral values in pixels in multiple ways. The present article aims to test the validity of use of vegetation indices in high-biodiversity forests in mountains by modelling the ground based forest carbon measurement with vegetation indices of NDVI, EVI, SAVI and MSAVI in a multi-sensor, multi-season data environment with multiple regression methods like linear, power, logarithmic, polynomial and exponential. It is found that all the regressions have a poor coefficient of determination not even exceeding 0.2. It is concluded that the remote sensing-based spectral vegetation indices alone cannot be a proxy for forest carbon calculators in high biodiversity mountain forests.

Keywords

Biodiversity, Forest Carbon, Mountain, Remote Sensing, Vegetation Indices.
User
Notifications
Font Size